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ABSTRACT
We investigated the Shannon cipher system with dis- 
crete memoryless source and noisy channel to the wire- 
tapper. The wiretapper gains the noisy version of the 
cryptogram and tries to guess encrypted plaintext given 
some exactness. In each step of sequential guesses the 
wiretapper has a testing mechanism. The security level of 
the encryption system is measured by the expected 
number of wiretapper’s guesses. The upper and lower 
bounds are obtained for the guessing rate.
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1. INTRODUCTION
The guessing as a computational secrecy for Shan- 

non cipher system (SCS) was introduced by Merhav 
and Arikan [1], [2].The SCS with distortion and reliabil- 
ity requirements was solved by Haroutunian and Ghaz- 
aryan [3], [4]. The SCS with correlated source outputs 
was studied by Hayashi and Yamamoto [5] and with 
general sources was studied by Hanawal and Sundare- 
san [6]. We considered the SCS with a noisy channel to 
the wiretapper [7]. For using some techiques we also refer 
to these two papers: Arikan and Merhav’s work [8] is 
dedicated to the guessing subject to distortion and Ya- 
mamoto and Okudra’s work [9] regards the channel 
coding theorem for the number of guesses in decoding. 
In this paper we investigate the combined model of the 
SCS considered in the papers [3] and [7]. The crypto- 
graphic system depicted in Fig. 1. is the SCS with a 
noisy channel to the wiretapper.
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Fig. 1. The Shannon cipher system with a noisy channel.

The memoryless stationary source generates a message 
which after ciphering is transmitted to legitimate re- 
ceiver via a public channel. To encrypt the plaintext 
encipherer applies the key-vector generated by mem- 
oryless stationary key-source. The key-vector is also 
communicated to decipherer by an extra secure channel 
secured against adversaries. The legitimate receiver can 
recover the original plaintext using the cryptogram and

the key. The wiretapper eavesdropping on the noisy 
channel gains a noisy version of cryptogram and tries 
to guess the plaintext on degree of exactness without 
knowing the key. It is assumed that the wiretapper 
knows the source and channel distributions and encryp-
tion  functions.  The  wiretapper  tries  to  reconstruct  source
messages within the given some distortion measure and 
distortion level. For approximative reconstruction of 
secret information the wiretapper makes sequential 
guesses, each time applying a testing mechanism by 
which he can know whether the estimate is successful or 
not and stops it when the answer is affirmative. The 
security level of this system is measured by the expected 
number of the wiretapper’s guesses needed before 
succeeding.Our goal is to estimate the expectation of the 
number of guesses that the wiretapper may have to 
submit before succeeding.

2. SYSTEM MODEL AND DEFINITIONS
We denote the RV by capital letters, the random

vector by bold capital letters, and their realizations are
denoted in lower-case letters, respectively. In the system
shown in Fig. 1. the source, key-source and channel are
stationary and memoryless. The source is assumed to
generate random vector X which consists of discrete, in-
dependent, identically distributed (i.i.d.) random vari-
ables (RVs) (X1, X2, . . . , XN ). The secret X should be
sent to a legitimate receiver. The RV X taking val-
ues in finite set X has a probability distribution (PD)
P ∗ = {P ∗(x), x ∈ X}. The key-source generates the
random vector U = (U1, U2, . . . , UK) of K purely ran-
dom bits independent of X. The key U which is used
for enciphering also must be sent to the decipherer by
an extra secure channel. The random vector X is en-
crypted using the key U by the encryption function
fN : XN × UK → YM where Y is the cryptogram al-
phabet and M/N is supposed to be equal to a constant
λ. After ciphering, the obtained random vector Y of
length M is dispatched via a public channel to a legit-
imate receiver. This encryption function is assumed to
be invertible providing the key is given, i.e. there exists
a decryption function f−1

N : YM × UK → XN which
allows the legitimate receiver to recover the original X.
A random vector Y=(Y1, Y2, . . . , YM ) depends on the
source and encryption function and PD of random vec-
tor Y was determined by a vector with size |Y|M . In
the noiseless version of SCS a wiretapper does not need
for PD of cryptograms, but in this case the wiretapper
must compute PD of random vector Y for the sake of
making a better guess. In theory knowing P ∗ the wire-
tapper and fN can count PD of random vector for each
N , but in practice such computation as well as storage
of information for large N is a very complicated task.

The wiretapper assumes that the cryptogram Y con-
sists in i.i.d. RVs and the RV Y has PD S = {S(y), y ∈



Y} which the wiretapper computes by the statistics of
cryptograms. The wiretapper gets a cryptogram through
a noisy discrete memoryless channel (DMC) with the
input alphabet Y, the output alphabet Z and with a
stochastic matrix of transition probabilities
W ∗ = {W ∗(z|y), y ∈ Y, z ∈ Z}. The joint PD of RVs
Y and Z is S ◦W ∗ = {S ◦W ∗(z, y) = S(y)W ∗(z|y), y ∈
Y, z ∈ Z} and PD of RV Z is SW ∗ = {SW ∗(z) =∑
y∈Y

S(y)W ∗(z|y), z ∈ Z}. The conditional probability

of y ∈ Y for the given z ∈ Z is the following

Ŵ=S◦W ∗/SW ∗ = {Ŵ (y|z) = S◦W ∗(z, y)/SW ∗(z), y ∈
Y, z ∈ Z}.

In this task it is allowed for wiretapper to guess
the original massage with some acceptable deviation.
Denote values of the RV X̂ by the x̂ representing the
reconstruction by the wiretapper of the source message
with values in the finite wiretapper reproduction alpha-
bet X̂ , in general, different from X .

We consider a single-letter distortion measure be-
tween source and wiretapper reproduction messages:
d : X × X̂ → [0;∞) . The distortion measure between
a source vector x ∈ XN and a wiretapper reproduc-
tion vector x̂ = (x̂1, x̂2, ..., x̂N ) ∈ X̂N is defined as an
average of the component distortions:

d(x, x̂) = N−1

N∑
n=1

d(xn, x̂n).

N
,

The wiretapper getting the cryptogram z produces some 
guessing strategy gN = {ˆx1(z), ˆx2(z), · · ·} until some 
message ˆx is found. We say that the guessing strategy is 
∆-achievable if there exists some j such that P r{d(X, 
ˆxj (z)) ≤ N∆} = 1. Let Gf g(Xˆ |Z) be a num- ber of 
guesses needed for the wiretapper to reproduce the ˆx by 
the strategy gN .

Definition 1: The key rate RK of the key source is

defined byRK = N−1 log 2K = K/N .
Definition 2: The ∆-achievable guessing rate

R(RK ,∆, P
∗,W ∗) of this system is defined by

R(RK ,∆, P
∗,W ∗) = lim

N→∞
sup
fN

inf
gN

1
N

log E [GN
f,g(X̂|Z)],

where E [GN
f,g(X̂|Z)] is the expectation of GN

f,g(X̂|Z).

We apply the method of types and covering lemma
([10], [11], [12]). The type P of vector x = (x1, . . . , xN ) ∈
XN is a PD P = {P (x) = N(x|x)/N, x ∈ X}, where
N(x|x) is the number of repetitions of the symbol x
among x1, . . . , xN . The set of vectors x of type P is de-
noted by T N

P (X). The set of all PD on X is denoted by
P(X ) and the subset of P(X ) consisting of the possible
types of sequences x ∈ XN is denoted by PN (X ).

We denote entropy of RV X with PD P and, respec- 
tively, divergence of PD P ∗ from P as follows:

HP (X)
4
= −

∑
x∈X

P (x) logP (x),

D(P ||P ∗) 4=
∑
x∈X

P (x) log
P (x)

P ∗(x)
.

The type of vector z is denoted by Q, and the set of
vectors z of type Q is denoted by T M

Q (Z).

The joint type of vector y ∈ YM and z ∈ ZM is the
PD {M(y, z|y, z)/M, y ∈ Y, z ∈ Z}, where M(y, z|y, z)
is the number of occurrences of pair symbols (y, z) in the
pair of vectors (y, z).

We say that the conditional type of y for the given
z is PD W = {W (y|z), z ∈ Z, y ∈ Y} if M(z, y|z,y) =
M(z|z)W (y|z) for all z ∈ Z, y ∈ Y. The set of all

sequences y ∈ YM of the conditional type W for the
given z ∈ T M

Q (Z) is denoted by T M
Q,W (Y |z) and called

the W -shell of z. WM (Y, Q) is the set of all possible
W -shells of z of type Q .

For the given PDs Q and Q̂ of Z and conditional

PDs W and Ŵ of Y for the given Z conditional entropy
of RV Y for the given RV Z is defined by

HQ,W (Y |Z)
4
= −

∑
z∈Z,y∈Y

QW (y) logW (y|z),

the conditional divergence of joint PD Q◦W from joint

PD Q ◦ Ŵ is defined by

D(Q ◦W‖Q ◦ Ŵ ) = D(W‖Ŵ |Q)

4
=

∑
z∈Z,y∈Y

Q(z)W (y|z) log
W (y|z)
Ŵ (y|z)

and the divergence of the joint PD Q◦W from the joint

PD Q̂ ◦ Ŵ is defined by

D(Q ◦W‖Q̂ ◦ Ŵ ) = D(Q‖Q̂) +D(W‖Ŵ |Q)

4
=

∑
z∈Z,y∈Y

Q(z)W (y|z) log
Q(z)W (y|z)
Q̂(z)Ŵ (y|z)

.

We will use the following inequalities, concerting the
types ([10], [11]).

|PN (X )| < (N + 1)|X|, (1)

|WM (Y, Q)| < (M + 1)|Z||Y|, (2)

for any type P ∈ PN (X )

|T N
P (X)| ≤ exp{NHP (X)}, (3)

for any PD P ∗

P ∗N{T N
P (X)} ≤ exp{−ND(P‖P ∗)}, (4)

for any type Q , conditional type W and z ∈ T M
Q (Z)

|T M
Q,W (Y |z)| ≤ exp{MHQ,W (Y |Z)}, (5)

and for any joint type Q ◦W and joint PD Q̂ ◦ Ŵ
on (Y × Z)M

Q̂ ◦ ŴM{T M
Q,W (Y |Z)} ≤ exp{−MD(Q ◦W‖Q̂ ◦ Ŵ )}.

(6)

Let P = {P (x), x ∈ X} be a PD on X and let

V = {V (x̂ | x), x ∈ X , x̂ ∈ X̂} be a conditional PD

on X̂ for given x, also we denote by PV = {PV (x̂) =∑
x

P (x)V (x̂ | x), x̂ ∈ X̂} the marginal PD on X̂ .

For RVs X and X̂ , the mutual information between

X and X̂ is defined as

IP,V (X ∧ X̂) =
∑
x,x̂

P (x)V (x̂ | x) log
V (x̂ | x)∑

x

P (x)V (x̂ | x)
.

Denote by V (P,∆) (below for brevity we shall just
write V ) a function, which puts into the correspondence
to the PD P the conditional PD V such that for given
∆ the following condition is implemented:

EP,V d(X , X̂ ) =
∑
x

P(x )V (x̂ | x )d(x , x̂ ) ≤ ∆.

Let V(P,∆) be the set of all functions V for given ∆
and P .



R(P,∆) is the notation of the rate-distortion function
for the PD P and ∆ and is equal to (see [10]):

R(P,∆) = min
V ∈V(P,∆)

IP,V (X ∧ X̂). (7)

We write f(N) = o(N) as N → ∞ to mean that
lim

N→∞
f(N)/N = 0.

The proof of the theorem is based on the above men-
tioned inequalities and the following random coding
lemma about covering of types of vectors , which is a
modification of the covering lemmas from [10]:

Lemma: For every type P and conditional type V ,
there exists a collection of vectors

{x̂l ∈ T N
PV (X̂), l = 1, ..., L(P, V,N)},

such that the family

{T N
P,V (X | x̂l), l = 1, ..., L(P, V,N)}

covers T N
P (X), i. e.

T N
P (X) =

L(P,V,N)⋃
l=1

T N
P,V (X | x̂l).

where

L(P, V,N) = exp{N(IP,V (X ∧ X̂) + o(N))}.

We also use the following notations

h(P,∆, Q,W,RK) = min{R(P,∆), λHQ,W (Y |Z)+RK}

and

h(P,∆, RK) = min{R(P,∆), RK}

3. FORMULATION OF THE RESULT
In the following theorem the upper and lower bounds

for the guessing rate are presented.
Theorem:For given PD P ∗, conditional PDs W ∗, V ∗,

and any key rate RK , the following estimates are valid

R(RK ,∆, P
∗,W ∗) ≤ max

S
max
P,Q,W

[h(P,∆, Q,W,RK)

−D(P ||P ∗)− λD(Q ◦W‖S ◦W ∗)],

R(RK ,∆, P
∗,W ∗) ≥ max

P
[h(P,∆, RK)−D(P ||P ∗)].

Corollary: When the wiretapper’s channel is noise-
less we arrive at the result of Haroutunian [4] if the
reliability function goes to infinity:

R(RK ,∆, P
∗) = max

P
[h(P,∆, RK)−D(P ||P ∗)].

Corollary: When ∆ = 0 we arrive at our result from
[7]:

R(RK , P
∗,W ∗) ≤ max

S
max
P,Q,W

[min{HP (X), λHQ,W (Y |Z)

+RK} −D(P ||P ∗)− λD(Q ◦W‖S ◦W ∗)],

R(RK , P
∗,W ∗) ≥ max

P
[min{HP (X), RK} −D(P ||P ∗)].

Corollary: When the wiretapper’s channel is noise-
less and ∆ = 0 we get the result of Merhav and Arikan
from [1]:

R(RK , P
∗) = max

P
[min{HP (X), RK} −D(P ||P ∗)].

4. PROOF OF THEOREM
Let the vector x generated by the source have the type

P (x ∈ TPN (X)), wiretapper receive vector z of type Q (z 
∈ TQM (Z)) and our cryptogram belong to W -shell

of vector z (y ∈ T MQ,W (Y |z)). To build a strategy for the
wiretapper, we consider the following two strategies gN1
and gN2 .

Strategy gN1 : The set XN can be represented as the
union of vectors of various types

XN =
⋃

i=1,2,···,|PN (X )|

T N
Pi

(X).

The wiretapper should reconstruct the vector x by the
given distortion level ∆. The wiretapper slights the
cryptogram z and into each type P tries to find some x̂
in each type so that d(x, x̂ ≤ N∆).

We consider a guessing strategy that enumerates the
types P from according to nondecreasing values of cor-
responding rate-distortion functions R(Pi,∆) (for sim-
plicity of formula writing we shall note only i in R(i,∆),
T N
i (X) instead of Pi and so on): R(1,∆) ≤ R(2,∆) ≤
. . .. Taking into account our notation we can write

L(i, Vmin
i , N) = exp{N( min

Vi∈V(i,∆)
Ii,Vi(X ∧ X̂) + o(N))}

= exp{N(R(i,∆) + o(N))} (8)

For fixed i let the set {x̂i,l ∈ T N

PiV
min
i

(X̂), l = 1, ...

, L(i, Vmin
i , N)} be such a collection of vectors (regard-

less of arrangement) that according to the lemma

{T N

i,Vmin
i

(X | x̂i,l), l = 1, ..., L(i, Vmin
i , N)},

covers TiN (X). Ignoring the cryptogram z the wiretap- 
per constructs the following sub-strategy in the above 

mentioned consequence : g1
N = {{x̂1,m, m = 1, ...,

L(1, Vmin
1 , N)}, {x̂2,l, l = 1, ..., L(2, Vmin

2 , N)}, . . .}.
The vector x belongs to T N

P (X) and, therefore, it is
clear that in this strategy gN1 the number of guesses is
bounded with (1) and (8) in the following way

GN
f,g1(x̂|z) ≤

∑
i:R(i,∆)≤R(P,∆)

L(i, Vmin
i , N)

≤ (N + 1)|X| exp{N(R(P,∆) + o(N))}
≤ exp{N(R(P,∆) + o(N))} (9)

Strategy g2
N : The set YM can be represented as the union 

of vectors of various conditional types for the given 
vector z ∈ TQM (Z) (these conditional types we arrange
in ascending order of conditional entropy: HQ,W1(Y |Z) ≤
HQ,W2(Y |Z) ≤ · · ·)

YM =
⋃

j=1,2,···,|VM (Y,Q)|

T M
Q,Vj

(Y |z).

In this strategy, the wiretapper aims to find the mes-
sage x ( luck improves if finds some x̂ ) sequentially
applying different keys on cryptograms y in ascending
order of conditional entropy for the given vector z. To
find some vector x̂ wiretapper finds the key u and the
cryptogram y which belongs to the W -shell of vector z
(y ∈ T M

Q,W (Y |z)), so in this strategy

gN2 = {f−1(y1,u1), f−1(y1,u2) · · · f−1(y1,uexp{K}),

f−1(y2,u1), f−1(y2,u2) · · ·},

the number of guesses by (2), (5) is bounded

GN
f,g2(x|z) ≤

∑
Wj :HQ,Wj

(Y |Z)≤HQ,W (Y |Z)

|T M
Q,Wj

(Y |z)|exp{K}



≤ (M + 1)|Z||Y|exp{MHQ,W (Y |Z) +NRK}
≤ exp{MHQ,W (Y |Z) + o(M) +NRK}
≤ exp{N(λHQ,W (Y |Z) +RK) + o(N)}. (10)

Strategy g3
N : Combining strategies g1

N and g2
N , we de- 

fine a new g3
N as follows:

gN3 = (x1,1, f
−1(y1,u1),x1,2, f

−1(y1,u2) · · ·).

Then, the number of guesses in the strategy gN3 is not
more than twofold the smaller number of guesses in gN1
and gN2 . Therefore, we have as can be seen (9) and (10)

GN
f,g3(x̂|z) ≤ 2 min[exp{NR(P,∆) + o(N)},

exp{N(λHQ,W (Y |Z) +RK) + o(N)}]
≤ exp{Nh(P,∆, Q,W,RK) + o(N)}. (11)

N
, X̂|Z)] can be calculated inThe expectation  E [Gf g3 ( 

the following way:

E [GN
f,g3(X̂|Z)] =

∑
z∈ZM

SW ∗M (z)E [GN
f,g3(X̂|z)]

=
∑

(y,z)∈(Y×Z)M

S ◦W ∗M (y, z)E [GN
f,g3(X̂|z)]

=
∑

(y,z)∈(Y×Z)M

S ◦W ∗M (y, z)

×
∑

x̂∈XN

Pr{x̂|z}GN
f,g3(x̂|z).

Applying inequalities (1), (2), (4), (6), (11) and taking 
into consideration that the expectation of Gf

N
,g3 (X

ˆ |Z) 
is maximum when random vectors Z and X are indepen- 
dent we obtain

E [GN
f,g3(X̂|Z)] ≤

∑
Q◦W∈Q◦WM (Y,Z)

S ◦W ∗M (T M
Q◦W (Y,Z))

×
∑

P∈PN (X )

P ∗N (T N
P (X))GN

f,g3(x̂|z)

≤ max
P,Q,W

[(N + 1)|X|(M + 1)|Z||Y|+|Z|

× exp{−MD(Q ◦W‖S ◦W ∗)}
× exp{−ND(P‖P ∗)}GN

f,g3(x̂|z)]

≤ max
P,Q,W

[exp{−λND(Q ◦W‖S ◦W ∗)

−ND(P‖P ∗) + o(N)}GN
f,g3(x̂|z)]

≤ exp{N max
P,Q,W

[h(P,∆, Q,W,RK)−D(P‖P ∗)

−λD(Q ◦W‖S ◦W ∗)] + o(N)}. (12)

Since our strategy is valid for any function fN , from
inequality (12) we obtain the upper bound for the guess-
ing rate

R(RK ,∆, P
∗,W ∗) = lim

N→∞
sup
fN

inf
gN

1

N
log E [GN

f,g(X̂|Z)]

≤ lim
N→∞

sup
1

N
log E [GN

f,g3(X̂|Z)]

≤ max
S

max
P,Q,W

[h(P,∆, Q,W,RK)

−D(P ||P ∗)− λD(Q ◦W‖S ◦W ∗)].

With respect to the lower bound, we have not got a bet-
ter result for it and we will use the result of Haroutunian
from [4], if the reliability function goes into infinity . It
is obvious that any lower bound on R(RK ,W

∗, P ∗) for
SCS with a noiseless channel to the wiretapper is also a
lower bound for the same system with a noisy channel.

Thus,

R(RK ,∆,W
∗, P ∗) ≥ R(RK ,∆, P

∗)

≥ max
P

[h(P,∆, RK)−D(P ||P ∗)].

The theorem is proved.

5. CONCLUSION
We utilize Merhav-Arikan’s security criterion applying
only the expected first moment of the number of guesses.
We gave some restrictions cryptograms : namely, wire-
tapper assumes that cryptogram consists in i.i.d. RVs
and the second the cryptogram is assumed to be of fixed
length M for given N .
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