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ABSTRACT
We consider weak value expansion of the Hermitian
operator in terms of a set of operators formed from
biorthogonal basis. The utility of the expansion is show-
cased with examples of spin one-half and spin one sys-
tems, where irreversible subset of stochastic matrices
describing projective measurement on a mixed state is
identified.
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1. INTRODUCTION
The concept of weak value, along with its experimen-
tal validation by weak measurements, has been around
for almost quarter century [1, 2, 3, 4, 5]. It is based
on the idea of physical value subjected to two succes-
sive measurements [6], which has been later extended
to general multiple-time measurements [7]. The weak
value formalism has a wide range of applications in var-
ious fields of quantum information theory. Particularly,
it can be used to transfer quantum-communication pro-
tocols [8], describe entangled systems [9], reconstruct
quantum optical states by weak measurements [10, 11]
and clone quantum systems [12]. To many physicists’
minds, however, the concept still entails an aura of mys-
tery, and confusion over its physical interpretations [13,
14, 15] never seems to have been fully cleared.

In this article, we intend to reconcile this often mystified
concept of weak value with the conventional orthogonal
vector space formulation of quantum mechanics by in-
troducing a complete set of weak values. We point out
the existence of a set of operators defined by biorthog-
onal Hilbert vector bases, with which any Hermitian
operator can be expanded, upon which the weak values
emerge as the expansion coefficients.

Virtue of bringing in the whole set of weak values, is
demonstrated by an example, in which a mixed quan-
tum state undergoes a projective measurement that brings
the system into another mixed state. This process is
shown to be easily described by an unistochastic ma-
trix, a “quantum” subset of stochastic matrices [16]. We
identify the condition in which the unistochastic matrix
is irreversible for the case of a spin one-half and spin one
systems. We obtain the subset of all possible projective

measurements, for which the history is erased, namely,
the reconstruction of the original state is impossible af-
ter the measurement.

2. WEAK VALUE EXPANSION
Consider a Hermitian operator A on Hilbert space of
dimension n. We attempt to represent A with two
different orthonormal bases {|ψj⟩ , j = 1, ..., n} with
⟨ψi|ψj⟩ = δi,j and {|ϕℓ⟩ ℓ = 1, ..., n} with ⟨ϕk|ϕℓ⟩ =
δk,ℓ. We assume that we have the property ⟨ϕℓ|ψj⟩ ̸=
0 for all ℓ, j. Following Aharonov, Albert and Vaidman
[1], let us define the weak value (A) of A by

(A)ℓ,j =
⟨ϕℓ|A |ψj⟩
⟨ϕℓ|ψj⟩

. (1)

We will use a weak value expansion, which is, tech-
nically, just a simple modification of standard expan-
sion of a Hermitian operator A with orthonormal states
{|ψj⟩}

A =
∑
i,j

|ψi⟩ ⟨ψi|A |ψj⟩ ⟨ψj | , (2)

using two sets of orthogonal states {|ψj⟩ , |ϕℓ⟩} instead
of one set. We also define the overlap matrices

µℓ,j = |⟨ϕℓ|ψj⟩|2 . (3)

Suppose Alice passes on a mixed state

ρ =
∑
j

|ψj⟩ ρ(ψ)
j ⟨ψj | (4)

to Bob, on which Bob performs a projective measure-
ment using the basis {|ϕℓ⟩ , ℓ = 1, 2, ..., n} and obtain
the mixed state

τ =
∑
ℓ

|ϕℓ⟩ τ (ϕ)ℓ ⟨ϕℓ| . (5)

Let us ask how Bob can reconstruct the state ρ with the
knowledge that Alice had obtained her state from a pro-
jective measurement in the basis {|ψj⟩ , j = 1, 2, ..., n}.

If the Alice’s state is expressed in the basis {|ϕℓ⟩}, a
generic representation with non-diagonal elements should
be obtained, namely

ρ =
∑
ℓ,m

|ϕℓ⟩ ρ(ϕ)ℓm ⟨ϕm| (6)

with ρ
(ϕ)
ℓm = ⟨ϕℓ| ρ |ϕm⟩. After the projective measure-

ment, only diagonal components of this expression re-

main, and we should have τ
(ϕ)
ℓ = ρ

(ϕ)
ℓℓ .



If we consider the weak value of ρ between states |ϕm⟩
and |ψj⟩, then obtain

⟨ϕm| ρ |ψj⟩
⟨ϕm|ψj⟩

= ρ
(ψ)
j , (7)

for any m, since ρ |ψj⟩ = ρ
(ψ)
j |ψj⟩, thus giving the for-

mal answer to our question in terms of the weak values.

In order to obtain the explicit expression of ρ
(ψ)
j in terms

of τ
(ϕ)
m , we rewrite this equation, by inserting the com-

plete set
∑
j |ψj⟩ ⟨ψj | in front of ρ in the LHS, in the

form

⟨ϕm|ψj⟩ ρ(ψ)
j −

∑
ℓ̸=m

⟨ϕℓ|ψj⟩ ρ(ϕ)mℓ = ⟨ϕm|ψj⟩ τ (ϕ)m , (8)

which can be reformulated as N2 linear equations in-
dexed by (m, j);

A
(m,j)
k,ℓ Xk,ℓ = B(m,j), (9)

for N2 unknown variables

Xk,ℓ = ρ
(ψ)
k (k = ℓ),

= ρ
(ϕ)
k,ℓ (k ̸= ℓ) (10)

with

A
(m,j)
k,ℓ = δk,jδℓ,j ⟨ϕm|ψj⟩ − δm,k(1 − δℓ,m) ⟨ϕℓ|ψj⟩ ,

B(m,j) = ⟨ϕm|ψj⟩ τ (ϕ)m . (11)

Clearly, this gives the solution to the problem of state
reconstruction.

We can further multiply ⟨ψj |ϕk⟩ to the above equation
from the right and sum up by j to obtain∑
j

⟨ϕm|ψj⟩ ⟨ψj |ϕk⟩ ρ(ψ)
j − (1 − δmk)ρ

(ϕ)
mk = τ (ϕ)m δmk,

(12)

which splits into ∑
j

µmjρ
(ψ)
j = τ (ϕ)m , (13)

∑
j

⟨ϕm|ψj⟩ ⟨ψj |ϕk⟩ ρ(ψ)
j = ρ

(ϕ)
mk, (14)

which are the explicit forms of linear equations that

enable us to obtain ρ
(ψ)
j and then ρ

(ϕ)
mℓ (m ̸= ℓ) from

τ
(ϕ)
ℓ [17].

3. DEGENERATE MATRICES OF
BIRKHOFF’S POLYTOPE

The reconstruction of Alice’s state by the results of
Bob’s measurement in the case of arbitrary spin can
be performed, in principle, in the same manner with eq.
(13), but in reality, the task is nontrivial. We need to
characterize all permissible matrices with positive ma-
trix elements µℓ,j , which make valid our computations
and allow us to solve the system of equations (13).

First of all we have a condition∑
ℓ

µℓ,j =
∑
j

µℓ,j = 1. (15)

The matrices, which are satisfied to such conditions,
are called bistochastic or doubly stochastic. The class
of N×N bistochastic matrices is a (N−1)2 dimensional
compact convex polyhedron known as the Birkhoff’s

polytope BN [16, 18]. The distance between two ma-
trices is defined by

D(A,B) =
√

Tr(A−B)(A† −B†). (16)

The boundary consists of corners, edges, faces, 3-faces
and so on. The extreme points or corners of the poly-
tope represent permutation matrices P (N).

At first let us summarize some well-known properties
of two-dimensional and three-dimensional bistochastic
matrices.

In the case of N = 2, B2 is a line segment with the
endpoints corresponding to permutation matrices

P
(2)
0 =

(
1 0
0 1

)
, P

(2)
1 =

(
0 1
1 0

)
. (17)

The distance between these endpoints is equal to D(P (2)0 , P
(2)
1 )=

2. Any bisochastic matrix µ(2) inside that line can be
formed by combination

µ(2) = p0P
(2)
0 + p1P

(2)
1 , (18)

with conditions

p0 + p1 = 1, 0 ≤ p0 ≤ 1, 0 ≤ p1 ≤ 1. (19)

If we use a parametrization p0 = cos2 θ
2
, p1 = sin2 θ

2
,

where 0 ≤ θ ≤ π, then obtain

µ(2) =

(
cos2 θ

2
sin2 θ

2

sin2 θ
2

cos2 θ
2

)
. (20)

In the case of N = 3 the Birkhoff’s polytope contains 6
corners of permutation matrices

(21)

It is easy to check that there are 6 longer edges with

lengthsD(P
(3)
0 , P

(3)
3 ) = D(P

(3)
0 , P

(3)
4 ) = D(P

(3)
3 , P

(3)
4 ) =

D(P
(3)
1 , P

(3)
2 ) = D(P

(3)
1 , P

(3)
5 ) = D(P

(3)
2 , P

(3)
5 ) =

√
6,

which form two equilateral triangles placed in two or-
thogonal 2-planes. The other 9 edges are shorter and
have a length 2. An arbitrary bistochastic matrix inside
B3 can be represented by

µ(3) =

5∑
i=0

piP
(3)
i , (22)

with condition

5∑
i=0

pi = 1 (0 ≤ pi ≤ 1). (23)

For any matrix µ(3) the representation (22) is not unique
as the dimension of the space of 3 × 3 bistochastic ma-
trices is 4 and we have 6 parameters connected with
the condition (23). Though the different points inside
Birkhoff’s polytope can correspond to the same bis-
tochastic matrix, the representation (22) is convenient

P
(3)
0 =

1 0 0
0 1 0
0 0 1

 , P
(3)
1 =

1 0 0
0 0 1
0 1 0

 , P
(3)
2 =

0 1 0
1 0 0
0 0 1

 ,

P
(3)
3 =

0 1 0
0 0 1
1 0 0

 , P
(3)
4 =

0 0 1
1 0 0
0 1 0

 , P
(3)
5 =

0 0 1
0 1 0
1 0 0

 .



and useful to characterize a space of bistochastic matri-
ces.

The second condition for reconstructing an initial infor-
mation after quantum measurement is the existence of 
unitary matrix, which constricts our set, but does not 
decrease a dimension. Bistochastic matrices, which can 
be represented by {µℓ,j = |⟨ϕℓ|ψj ⟩|2} are called unis-
tochastic.

Figure 1: The surface of degenerate matrices

of the 3-plain P
(3)
0 P

(3)
1 P

(3)
2 P

(3)
3 of the Bikhoff’s

polytope (a) and it’s intersection with the unis-
tochastic surface (b). The intersection consists
of two lines O1O

′
1 and O2O

′
2, connecting the cen-

ters of edges of irregular tetrahedron.

In a general case for arbitrary N there is no certain 
way to check whether the given bistochastic matrix is 
unis-tochastic or not. However, for N = 2 the 
answer is obvious, since all 2 × 2 bistochastic 
matrices (20) are unistochastic. For the case N = 3 it 
is always pos-sible to check whether the given 
bistochastic matrix is unistochastic or not. Introducing 
new notations

L1 =

√
µ
(3)
11 µ

(3)
12 , L2 =

√
µ
(3)
21 µ

(3)
22 ,

L3 =

√
µ
(3)
31 µ

(3)
32 , (24)

we verify a condition of forming triangle with side lengths

L1, L2 and L3

|L2 − L3| ≤ L1 ≤ L2 + L3. (25)

If the inequalities (25) are satisfied, then the matrix

µ(3) is unistochastic. The unistochastic subset U3 of B3

was studied in [19]. The third condition for obtaining
coefficients Pj is the existence of unique solution of the
system of linear equations (13), which means that the
matrix µ has to be invertible.

Figure 2: The surface of degenerate matrices

of the facet P
(3)
0 P

(3)
1 P

(3)
3 P

(3)
4 and it’s intersec-

tion with the 3-surface of unistochastic matrices.
The center of equilateral triangle P

(3)
1 P

(3)
3 P

(3)
4 be-

longs to the surface degenerate matrices. The
boundary of unistocastic matrices on the plain

P
(3)
1 P

(3)
3 P

(3)
4 is a 3-hypocycloid.

For the case N = 2 the matrix (20) is degenerated only if 
θ = π/2, which corresponds to the midpoint of the 
segment of bistochastic matrices. This amounts to the

reconfirmation of the argument of irreversibility in the 
previous section. When N = 3 we have a three-dimensi-
onal surface of degenerate bistochastic matrices, which is 
specified by the condition

detµ(3) = 0. (26)

Notice that the center of Birkhoff’s polytope µ
(3)
ij = 1

3
also belongs to the surface of degeneracy. To charac-



terize this surface we depict its boundaries in corre-
sponding three-dimensional surfaces of Birkhoff’s poly-
tope. Figure (1a) illustrates a surface of degenerate bis-
tochastic matrices, which have components p4 = 0 and
p5 = 0 in the representation (22). Figure (1b) demon-
strates an intersection of the surfaces of degenerate and
unistochastic matrices. This intersection consists of two
lines O1O

′
1 and O2O

′
2, where O1, O

′
1, O2, O

′
2 are the mid-

points of the edges P
(3)
0 P

(3)
2 , P

(3)
1 P

(3)
3 , P

(3)
2 P

(3)
3 , P

(3)
0 P

(3)
1

correspondingly. Thus, to obtain a set of permissible
matrices µ(3), we have to subtract the lines O1O

′
1 and

O2O
′
2 from the surface of unistochastic matrices. In fig-

ure (2a) the surface of non-invertible matrices is shown

within the 3-plain P
(3)
0 P

(3)
1 P

(3)
3 P

(3)
4 . It touches a plain

P
(3)
0 P

(3)
3 P

(3)
4 at the center of the equilateral triangle.

Note that the centers of segments P
(3)
0 P

(3)
1 , P

(3)
3 P

(3)
1 ,

P
(3)
4 P

(3)
1 also belong to this surface. The set of unis-

tochastic matrices with components p2 = 0 and p5 = 0
represent a three-dimensional volume, which contains

edges P
(3)
0 P

(3)
1 , P

(3)
3 P

(3)
1 , P

(3)
4 P

(3)
1 . On the plain

P
(3)
0 P

(3)
3 P

(3)
4 the boundary of unistochastic subset is the

famous hypocycloid [20]. The intersection of the sets of
unistochastic and degenerate matrices is shown in fig-
ure (2b). Here also the set of permissible matrices µ(3)

can be obtained by subtracting the set of non-invertible
matrices from the volume of unistochastic ones.

4. CONCLUSION
In this article we have shown that the weak values emerge
quite naturally from the gauge invariant expansion of
Hermitian operators using two sets of orthonormal bases.
The absence of the smooth single orthonormal basis in
the limit {ϕℓ} → {ψℓ} of the expansion seems to explain
the reason why the concept of the weak value has eluded
the discovery by all practitioners of quantum mechanics
until late twenty-eighties.

It will be both very interesting mathematically and use-
ful experimentally to characterize the unistochastic ma-
trices of higher dimension and their irreversible subsets
within the Birkhoff’s polytope. It appears, however,
that we have no general recipe for this task at this point,
since characterizing the structure of the Birkhoff’s poly-
tope itself is already a hard task, partially completed
only up to N = 4 [19].
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