
Inversion in GF (2n) with the aid of Hankel Polynomials

Alexei, Uteshev
St.Petersburg State University

St.Petersburg, Russia

e-mail: alexeiuteshev@gmail.com

Ivan, Baravy
St.Petersburg State University

St.Petersburg, Russia

e-mail: ivan.baravy@apmath.spbu.ru

ABSTRACT
We treat the problem of inversion of an element in
GF (2n). Our approach is based on representation of
this inversion in the form of an appropriate determi-
nant (Hankel polynomial) and further its computation
with the aid of suggested recursive procedure.

Keywords
Inversion in finite fields, error-correcting codes, Hankel
polynomials

1. INTRODUCTION
The problem of finding inversion for a Galois field
GF (pn) nonzero element a is a known theoretical prob-
lem which is of vital importance for the error-correcting
codes practice. The two constructive algorithms for
computation of a−1 consist either in application of the
extended Euclidean algorithm (computing the continu-

ant) or in exponentiation ap
n−2; the latter, however, is

impractical for large fields.

2. ALGEBRAIC PRELIMINARIES
Let F (x) = xn+A1x

n−1+. . .+An andG(x) = B0x
n−1+

B1x
n−2 + . . .+ Bn−1 be polynomials over C. Consider

the following Laurent expansion

1

F (x)
=

∞∑
k=n−1

dk
xk+1

,
G(x)

F (x)
=

∞∑
k=0

ck
xk+1

. (1)

The coefficients {dk}∞k=n−1 can be determined by the
recurrent formulae

dk =

1 if k = n− 1;

−dn−1A1 if k = n;

− (dk−1A1 + . . .+ dn−1Ak−n+1) if k < 2n− 1;

− (dk−1A1 + . . .+ dk−nAn) if k ≥ 2n− 1.

(2)

Once they are calculated, the coefficients {ck}∞k=0 are
determined by

ck =

{
dk+n−1B0 + . . .+ dn−1Bk if k < n− 1;

dk+n−1B0 + . . .+ dkBn−1 if k ≥ n− 1.
(3)

Theorem 1 (Kronecker [1, 2]). Polynomials
F (x) and G(x) are relatively prime iff the Hankel

matrix

C = [cj+k]
n−1
j,k=0 (4)

is nonsingular. One can also compute polynomials u(x)
and v(x) providing the linear representation

v(x)F (x) + u(x)G(x) ≡ detC (5)

with the aid of the minors of the matrix (4). For in-
stance, u(x) can be computed as the determinant of the
matrix obtained from (4) by replacing its last row by
[1, x, x2, . . . , xn−1]:

u(x) =

∣∣∣∣∣∣∣∣∣
c0 c1 . . . cn−1

c1 c2 . . . cn
· · · · · ·
cn−2 cn−1 . . . c2n−3

1 x . . . xn−1

∣∣∣∣∣∣∣∣∣ . (6)

Equality (5) is equivalent to the fact that u(x)/ detC =
[G(x)]−1 (mod F (x)) can be computed with the aid of
specially constructed determinant composed from the
coefficients of expansion (1). Our aim now is to or-
ganize efficient computation of this determinant. We
begin with

Definition 1. For any sequence {ak}∞k=0 ⊂ C the
polynomial represented in determinantal form as

Hk(x) =

∣∣∣∣∣∣∣∣∣
a0 a1 . . . ak

a1 a2 . . . ak+1

· · · · · ·
ak−1 ak . . . a2k−1

1 x . . . xk

∣∣∣∣∣∣∣∣∣ (7)

is called the k-th Hankel polynomial [3] generated by the
sequence {ak}∞k=0. We also set H0(x) ≡ 1.

k=0

Polynomials of this type appear in different areas of
computational mathematics such as approximation the-
ory, Reed–Solomon codes, etc. Thus, the polynomial (6)
is the (n 1)-th Hankel polynomial generated by the

sequence
−
{ck}∞ . If we denote by Ck the k-th leading principal minors of the matrix (4), then

u(x) ≡ Cn−1x
n−1 + . . . where dots mean the terms of

degree < n− 1.

Example 1. For F (x) = x8 + x4 + x3 + x2 + 1 and
G(x) = x7 + x5 + x2 + x find Hankel polynomials
{Hk(x)}7k=1 generated by the sequence {ck}∞k=0.

Solution. We first compute the values {dk}20k=7 via (2)

and then {ck}13k=0 via (3):

{1, 0, 1, 0,−1, 0,−1,−1,−1, 1, 1, 2, 4, 1} .

Thus, one has

H1(x) = x, H2(x) = x2 − 1, H3(x) = −2x3 − 2x,

H4(x) = 4x4 − 2x3 − 2x+ 4,

H5(x) = −6x5 − 8x4 + 10x3 + 3x2 + 4x− 11,

H6(x) = −31x6 + 6x5 + 8x4 − 10x3 − 3x2 − 35x− 20,

H7(x) = −56x7 − 51x6 + 46x5 + 24x4

−58x3 − 79x2 − 119x− 4 .

It turns out that

H3(x) ≡ −2xH2(x)− 4H1(x),

H4(x) ≡ (−2x+ 1)H3(x)− 4H2(x),

H5(x) ≡ (−3/2x− 11/4)H4(x)− 9/4H3(x),

H6(x) ≡ (31/6x− 71/9)H5(x)− 961/36H4(x),

H7(x) ≡ (56/31x+ 1917/961)H6(x)− 3136/961H5(x) .

This means: for k > 2 every polynomial Hk(x) is a
linear combination of Hk−1(x) and Hk−2(x).

Denote by hkj the coefficients of the expansion of Hankel
polynomials generated by {ck}∞k=0 in powers of x:

Hk(x) ≡
k∑

j=0

hkjx
k−j = Ckx

k + hk1x
k−1 +

Theorem 2. Three consecutive Hankel polynomials
Hk−2(x), Hk−1(x) and Hk(x) are connected by the iden-
tity:

[Ck]
2Hk−2(x) + [Ck−1]

2Hk(x)

+(Ckhk−1,1 − Ck−1hk1 − CkCk−1x)Hk−1(x) ≡ 0 .

(8)

Provided that the coefficients of Hk−1(x) are precom-
puted, the values for Ck and hk1 can be calculated via
the formulae

Ck =

k−1∑
j=0

ck−1+jhk−1,k−1−j , hk1 =

k−1∑
j=0

ck+jhk−1,k−1−j .

(9)

This result provides one with an opportunity to com-
pute recursively the sequence {Hk(x)}k∞=0 of Hankel
polynomials: for k ≥ 2 every polynomial can be deter-
mined as the linear combination of the two preceding
ones. However, it should be mentioned that the case
of vanishment of Ck−1 makes the formula (8) useless
for computing Hk(x). Though the condition Ck−1 = 0
should be treated as an exceptional case when dealing
with polynomials in C, this condition cannot be ignored
for the case of finite fields.

3. INVERSION IN GF (2n)
We treat GF (2n) as Z2[x]/F (x) where F (x) ∈ Z2[x]
is the generating polynomial of the field, i.e., an irre-
ducible polynomial of degree n over Z2.

Example 2. Let us recompute Hankel polynomials
from Example 1 modulo 2.

Solution. One has

H1(x) ≡2 x, H2(x) ≡2 x2 + 1, H3(x) ≡2 H4(x) ≡2 0

H5(x) ≡2 H2(x), H6(x) ≡2 H7(x) ≡2 x6 + x2 + x .

If F (x) = x8+x4+x3+x2+1 is treated as the generating
polynomial for GF (28), then in this field the inversion
of the element G(x) = x7 + x5 + x2 + x equals H7(x).
One can also notice that H6(x) ≡2 (x4 + x2)H2(x) +
H1(x).

This example illustrates that, firstly, the case Hk(x) ≡ 0
should not be treated as an exceptional one, and, sec-
ondly, if Hk(x) ̸≡ 0 then this polynomial can be rep-
resented in the form Hk(x) ≡ q(x)Hj(x) + Hi(x) with
i < j < k and q(x) ∈ Z2[x]. In comparison with the case
of infinite fields, for the finite fields one cannot expect
that, generically, j = k − 1, i = k − 2.

The constructive generalization in GF (2n) of the recur-
sive computational scheme for computing the inverse
element can be executed with the aid of

3.1 Berlekamp–Massey algorithm
Hereinafter it will be referred to as the BM-algorithm
[4]. Hankel polynomial Hk(x), defined by (7), can be
interpreted as the characteristic polynomial for the lin-
ear recurrent sequence of the order k with the first
2k elements coinciding with {aj}2k−1

j=0 . That means: if

Hk(x) ≡
∑k

j=0 hkjx
k−j then

k∑
j=0

hkjak−j+ℓ = 0 for ℓ ∈ {0, . . . , k − 1}.

The goal of the BM-algorithm is to find the minimal
annihilating polynomial for a linear recurrent sequence

{ck}2(n−1)−1
k=0 ⊂ GF (2). Minimal polynomial coincides

with Hn−1(x) iff hn−1,n−1 ̸= 0; otherwise it equals
Hn−1(x)/x

s where s denotes the multiplicity of x = 0
as a root of Hn−1(x).

The pseudocode representation of the BM-algorithm in-
ternals permits one to watch its recursive character.

(1)

length = 2*(n-1)

B = H = 1

L = 0

m = -1

(2)

d = 0

for (j = 0; j <= L; j++)

d = d + H[j] * C[i - j]

(3)

if (d != 0)

T = H

for (k = 0; k < length - i + m; k++)

H[i - m + k] = H[i - m + k] + B[k]

if (2*L <= i)

L = i + 1 - L

m = i

B = T

(4)

if (i < length)

i = i+1

goto (2)

We have modified this scheme with the aim to restore
the string of the coefficients of the polynomial Hn−1(x)
from the string of the coefficients of the minimal poly-
nomial for the sequence {ck}2n−3

k=0 .

The multiplicity s itself is computed implicitly via the
above scheme. It equals 2(n − 1) − m which naturally
leads from the following algorithm properties:

• The string of coefficients of any minimal polyno-
mial starts with 1;

• If 1 . . . 1 is the string of the minimal annihilating
polynomial then 0 . . . 0︸ ︷︷ ︸

s times

1 . . . 1 is also the string of

annihilating polynomial;

• Multiplicity s does not exceed i−m at each step
and, therefore, equals 2(n− 1)−m after 2(n− 1)
cycles.

Example 3. Let GF
(
216

)
be generated by

F (x) = x16 + x5 + x3 + x2 + 1 .

Find the inversion for

G(x) = x15 + x12 + x11 + x10 + x9 + x4 + x3 .

Solution. With the sequence {ck}29k=0 computed via
(3) and represented as a string:

100111100000110111010111111011,

the list of strings of the coefficients of annihilating
polynomials for all the 2(n− 1) = 30 steps is as follows
(corresponds to the decreasing order of powers of x):

01: 1100000000000000 16: 1110011000000000

02: 1000000000000000 17: 1110011000000000

03: 1000000000000000 18: 1110011000000000

04: 1001000000000000 19: 1110011000000000

05: 1101000000000000 20: 1110011000101010

06: 1101000000000000 21: 1001010100101010

07: 1100000000000000 22: 1001010100101010

08: 1010100000000000 23: 1000100111101010

09: 1010100000000000 24: 1000011110001010

10: 1011001000000000 25: 1000000010111010

11: 1110011000000000 26: 1000000010111010

12: 1110011000000000 27: 1000000010111010

13: 1110011000000000 28: 1000000001011100

14: 1110011000000000 29: 1000000000101111

15: 1110011000000000 30: 1100000000000001

Thus [G(x)]−1 = x15+x14+1. The strings numbered 1,
2, 4, 7, 8, 10, 18, 27 yield Hankel polynomials Hk(x) for
k ∈ {1, 2, 3, 4, 5, 6, 13, 14} respectively. For this example
H7(x) ≡ . . . ≡ H12(x) ≡ 0.

3.2 Modifications and optimization
Before considering any optimization we should first re-
mind important propositions on complexity of BM-algo-
rithm. As it was mentioned above, minimal annihilation
polynomial represents the recurrent relationship for the
input sequence. It is calculated in O(t2) time, where t
stands for the order of the recurrent sequence and thus
can significantly vary depending on the input sequence.
In other words, t + 1 equals the length of the minimal
polynomial H(x), which is defined as 1+ the difference
between the highest and the lowest exponents of the
variable x contained in the expansion of H(x). It can
be shown that the length of an average polynomial H(x)
with deg H ≤ n equals n− 1. Therefore, the asymptotic

complexity of the proposed algorithm is nearly the same
as that one based on the extended Euclidean algorithm
(which is a standard tool used for inversion in finite
fields).

It is worth mentioning the following advantages of the
proposed algorithm over the extended Euclidean one:

• The BM-algorithm does not use division opera-
tion which is known to be highly computationally
expensive;

• There are no true multiplications in it since mul-
tiplication in GF (2) is equivalent to logical AND
operation;

• Both for cycles can be easily vectorized to speed
up them several times on modern CPUs.

While the first two statements are rather evident the
last one should be explained.

Vectorization technique implies packing data into blocks
as to process them one block at a time. Since coefficients
of H(x) are either 0 or 1 they can be naturally repre-
sented as bits and then grouped into bytes and data
words. The longer are words we operate on, the faster
is data processing. Speaking in terms of machine codes
and CPU architecture, we are interested in registers of
a maximum length capable to handle logical XOR (bi-
nary addition), AND (multiplication), SHL/SHR (shift)
and ROL/ROR (rotating) instructions. Those are 32-
and 64-bit general purpose registers on modern CPUs.
This means that finite field inversion problem can be
solved especially successful for fields up to GF (232) or
GF (264). To be concrete, the whole first pseudocode
for cycle becomes single1 AND instruction acting on
two registers. The second cycle is replaced by the pared
SHL and XOR instructions.

A direct consequence of the above mentioned optimiza-
tion procedure is nearly linear computational complex-
ity of the BM-algorithm for GF (2n) with n ≤ 64. For
n > 64, this complexity is ∼ γn2, however the constant
γ can be diminished drastically with the aid of vectori-
zation.

Another valuable kind of optimization consists in choos-
ing a specific generating polynomial F (x). Its coeffi-
cients influence the sequence {ck} by virtue of the se-
quence {dk} computed via (2). Thus, in order to inverse
several elements in the field, one should compute first
{dk} and then to utilize purely multiplication formulae
(3) to obtain the coefficients {ck}. Therefore, the sparse
structure of F (x) induces the sparse structure of {dk}
and therefore affects the algorithm complexity.

One additional possible modification is related to the
recursive versions of both extended Euclidean and BM-
algorithms [4]. In comparison with their nonrecur-
sive counterparts, their computational complexity is
O(n log2 n).

4. ACKNOWLEDGEMENT
1On Intel x86 and AMD x86 64 CPUs a series of XOR
instructions can be omitted here in favour of cheap
checking of parity flag.

This research was supported by the St.Petersburg State
University research grant 9.38.674.2013 and by the
research grant of the company RAIDIX2.

REFERENCES
[1] L. Kronecker, “Zur Theorie der Elimination einer

Variabeln aus zwei algebraischen Gleichungen”,
Werke, Bd. 2, Teubner, Leipzig, pp. 113-192, 1897.

[2] A.Yu. Uteshev, T.M. Cherkasov, “The search for
the maximum of a polynomial”, J. Symbolic
Computation, Vol. 25, 5, pp. 587-618, 1998.

[3] P. Henrici,“Applied and Computational Complex
Analysis”, V. 1, NY. Wiley, 1974.

[4] R. Blahut,“Fast Algorithms for Digital Signal
Processing”, Addison-Wesley, 1985.

2http://www.raidixstorage.com

