
Model of distributed computations in virtual testbed

Ivan Gankevich

Saint-Petersburg State University
Saint-Petersburg, Russia

e-mail: igankevich@cc.spbu.ru

Alexander Degtyarev

Saint-Petersburg State University
Saint-Petersburg, Russia

e-mail: deg@csa.ru

ABSTRACT
Virtual testbed is a complex system of modeling natural and
anthropogenic phenomenon and a nature of problems being
solved is so demanding to computer resources that it requires
efficient model of computations to be developed in order to
complete experiments in time. Analyses have shown that
such a model should provide resilience to node failures,
ensure transactional behavior of computations and also be
capable of both static and dynamic load balancing. The
model has been developed on the basis of actor model which
is analogous to hierarchical model governing work of a team
with a large number of participants. The model was adapted
to accommodate its usage in a distributed environment and
research results can be used to embed it in a compiler that
translates source code of a sequential program into parallel
directives of the model.

Keywords
Virtual worker, distributed system, testbed.

1. INTRODUCTION
The notion of computation is not only inherent to machines
but also for people and a process of solving a problem by a
team of people can be divided into three divide
and conqueror stages. During the first stage principal
divides complex problem into smaller subtasks and assigns
them to his subordinates, in the second stage
subordinates solve the assigned tasks in parallel and in
the last stage principal collects the results, approves
them and then consolidates them into a single solution.
Unsuccessful approvals lead to reiteration of the assigned
tasks until the agreement is reached which in turn leads
to asynchronous stage transitions among subordinates when
principal waits for valid results from one person and
collects the approved results from others. In summary, a
process of solving a problem by a group of people is
composed of three stages: factoring of a problem into
subtasks for parallel execution and collecting computed
results into a final solution - and transitions between stages
occur asynchronously due to approval mechanism.
The way a group of people solves the problem can be
compared to the way that problems are solved by a
multiprocessor computer, however, it has its own
peculiarities. First of all, a problem being solved is
decomposed into two parts: data and code used to process it
- and process of solving problem is represented by
interaction between a data flow and a control flow. In such
interpretation data goes through the steps of 1)
decomposition into independent chunks and
distribution between available memory banks, 2) local
processing on each processor and 3) consolidation; in
similar vein, code goes through the steps of 1)
decomposition into distinct code parts which are
distributed between processors, 2) local computations on
each processor and 3) synchronization of all control
streams. Data flow and control flow are reflected using
queue and pipeline mechanism and this is how
transition between solution stages is carried out. So, the way

multiprocessor computer solves the problem is analogous to
the way that the problem is solved by a team of people with
exception to solution process being decomposed into data
and control flow (Table 1).

I II III
Stage Division Execution Collection
Problem into

subtasks
of subtasks of results

Data into chunks of
transformat
ions

of
transformation
results

Code into threads of threads synchronization

Table 1. Comparison of the way a multiprocessor
machine and a team of people solve a problem using
divide and conqueror approach.

In a general case a problem being solved is so complex
that the solution can be obtained not by one team but by a
group of teams and their leaders composing single
hierarchy, and such organization does not change the
model but increases its complexity. Considering such
organization the solution of subtasks also can be
decomposed into sequential stages and it causes the work
to flow down through hierarchy of workers and the
results of this work to flow up through the same hierarchy.
In addition to this, in a group of teams each principal can
also be someone's subordinate, therefore, the failed
approvals can cause reiteration of several layers of work. So,
any work that flows down the hierarchy is always
accompanied by the corresponding results flowing up the
hierarchy. Finally, unpredictable or planned activities such
as workers going to vacation or dismissal cause
modification of a hierarchy and there should be a
mechanism of reassigning a task to another worker instead
of dismissed one and a mechanism of reelection of a new
chief principal. To summarize, the process of solving a
complex problem by a group of teams is characterized by a
work flowing down the dynamically changing hierarchy of
workers accompanied by the approved results flowing in the
opposite direction.
In a way that teams can be composed into single hierarchy of
workers to solve complex problems multiprocessor
machines can be connected to form a single cluster and such
cluster of computers has a similar principle of operation.
Much like a work flows down a hierarchy of workers data
and code flows down a hierarchy of computers (a
network) and results of computations flow up the same
hierarchy in both cases (Figure 1). Analogous to hierarchy
of workers being changed over time by adding and
removing people from teams a network topology is
changed by adding and removing computers due to
hardware failures or withdrawal and it causes work to be
reiterated on different set of machines. So, given that a
network topology of a computer cluster can be represented
by hierarchy of machines its principle of operation is
analogous to that of a hierarchy of workers and can be
described as a generalization of operation of a single
multiprocessor machine.

Figure 1. Mapping of hierarchy of virtual workers to
hierarchy of computers.

All in all, computing model of a computer cluster is similar
to how a group of teams solves the complex problem
together and computing model of a single machine is similar
to a process of solving problem by a single team of workers.
These models can be combined by matching staging
principle of doing work with a mechanism of interaction
between separate cluster nodes. This is how the generalized
model governing computations in distributed environment
can be obtained and one possible way of development of
such model is described in the paper.

2. DISTRIBUTED COMPUTING
MODELS COMPARISON
There are several standards and experimental technologies
governing computations in distributed environment and there
are typical techniques of organizing distributed computing
used several standards at once. These are compatibility with
different parallel computer architectures and capability to
work not only with distributed data but also with parallel
computations (MIMD in Flynn classification [12]). In
addition to this, there are some properties that are important
in distributed environment; these are fault tolerance which
importance is increased with a size of a computer cluster and
load balance which is a requirement in heterogeneous
network of computers. All in all, these techniques and
properties can be used to access evolution of technologies
governing computations in distributed environment (Table
2).
Although, data and code often considered separately,
techniques to work with them in distributed environment are
analogous to each other and can be used together. In case of
code parallelism means a possibility to decompose control
flow into distinct streams solving separate subtasks and
pipelining means a possibility to sample each of the streams
into distinct sequential parts. In similar vein, in case of data
distribution means a possibility to divide data array into
distinct chunks and queuing means possibility to process
data in a defined order. Finally, in either case recursion
means a possibility of recursive application of the described
techniques so that they are orthogonal to each other. To
summarize, three general techniques to work with code and
data in distributed environment complement each other and
can be used together to factor initial data structure of a given
problem into separate and connected parts and to factor a
process of its solution into parallel and sequential stages
(Figure 2).

Figure 2. Interviewing of data and control flow: rectangles
represent different data structures and arrows represent
different transformations applying to chunks of data;
parallelization ratio measures an ability to efficiently
distribute computation of a single workload and serializaiton
ratio measures an ability to efficiently distribute processing
of multiple workloads (a number of units in a pipeline).

Much like data and code has different techniques to work
with them in distributed environment fault tolerance and load
balance can also be accomplished in two different ways
complementing each other. The first way represents
“integral” approach and is based on usage of additional
redundant machines to tolerate hardware failures and usage
of virtual machines with controlled parameters to balance
load. This approach is used to develop fault tolerant
distributed databases on the basis of distributed hash tables
[3, 4]. The second way represents “differential” approach
and is based on factoring workload into sufficiently small
pieces that are distributed among available machines and can
migrate between them. Such approach is used to process and
to store in a consistent way big volumes of data [1, 2]. Since,
the first way is purely technical and the second way is
programmatic they can be combined to leverage efficiency.

Standards Experimental technologies
1 2 3 4 5 6 7 8

Architecture
SMP + + + + + + + +
PVP + + +
MPP + + + + +
Data
Distribution + + + + + + + +
Recursive dist. + +
Queuing + + +
Code
Parallelism + + + + + +
Recursive par. +
Pipelining + + +
Other prop.
Fault tolerance +
Load balance + + + +

Table 2. Comparison of standards and experimental
technologies governing computations in a distributed

environment.. 1 – OpenMP, 2 – MPI, 3 – OpenCL, 4 –
MapReduce, 5 – MPC [13], 6 – STAPL [14], 7 – OpenACC,

8 – VirtualCL.

Comparison of standards and experimental technologies
using distributed techniques shows that evolution of
technologies goes towards load balancing and support for
vector and cluster architectures (Table 2) and current
standards lack support for fault tolerance and recursive
techniques, however, implementation of standards are not
always identical. For example, OpenMP defines directives
for recursive data distribution (nested #omp parallel for

loops) but neither implementations of this standard
fully support such directive nor the support maps it
efficiently to the underlying hardware. Moreover, this
directive is rarely combined with recursive parallelism
directive (#omp task). Another example is OpenCL
standard which aimed to support both SMP and
PVP architectures but code optimization techniques
use different criteria for CPU and GPU devices [10].
In summary, peculiarities in implementations of
standards lead not only to the lack of efficient support
for recursive parallelism and data distribution but
also for inefficient support for PVP architectures.
All in all, standard and technologies of
distributed computing use similar techniques to manage
computations in distributed environment, however, not even
a single standard implement these techniques in full. Data
distribution and parallelism techniques are realized
separately from each other and do not always allow
recursive application (arbitrary nesting). Finally, load
balance and fault tolerance are implemented mostly in a
programmatic way.

3. GENERALIZED DISTRIBUTED
COMPUTING MODEL
Analysis of distributed computing models shows that each
concurrency technique operates on some sort of parts of a
whole problem and those parts are analogous to each other in
terms of their behavior. In case of data these parts represent
data structures that can be recursively divided into smaller
chunks to put into separate processing queues. In case of
code those parts represent code sections that can be divided
into smaller ones to form parallel pipelines. So, in both cases
the notion of part is connected with some volume of code or
data.
In contrast to concurrency techniques computation properties
such as fault tolerance and load balance represent not a
behavior of parts of a problem but a behavior of a process of
finding solution as a whole. So, the rule of fault tolerance in
case of data ensures that in event of failure of a machine
storing some volume of data you can always find another
machine that stores the same volume of data and in case of
code it ensures that you can always find another machine to
execute the code one more time. Load balance rule ensures
that each machine in a cluster is loaded as much as it is
allowed by available computational power and operating
memory capacity. In summary, for the system to adhere to
both of these rules data replication and code migration
should take into account workload of the system.
Described techniques and rules can be consolidated in a
single entity by introducing a notion of a virtual worker
which has a set of distinct properties and generalized
behavior. First, virtual worker consists of both the data and
the code processing it and such an approach unifies a notion
of a data and control flow. Second, each virtual worker is
capable of spawning its own virtual subordinates with their
own data and code structure and also is able to approve the
results of their tasks. Approval of results means possibility to
commit or rollback completed work and describes
transactional behavior of a virtual worker. Third, virtual
worker is mobile and can be migrated to another machine
when current one is overloaded. All in all, a virtual worker is

• a unit of parallelism representing independent
fractions of a problem,

• a unit of hierarchy controlling execution of tasks of
his subordinates,

• a unit of transaction capable of committing and
rolling back actions of his subordinates and

• a mobile unit supporting migration between
different computing nodes of a cluster.

Computational process involving virtual workers
is composed of three divide and conqueror stages and
has a straightforward mapping to a computer system
architecture. The process starts by spawning main virtual
worker and the first stage consists of recursive spawning of
subordinates that are put to a processing queue. Then the
second stage consists of direct processing of virtual
workers and the third stage consists of collection and
combination of results that flow up the virtual workers
hierarchy. The mapping of the process occurs by matching
virtual workers hierarchy with hierarchy of machines in a
computer system and processing queues are created for
each machine in a system. So, much like in a hierarchy
of real workers computational process is composed of three
divide and conqueror stages and by matching this
hierarchy to a topology of a computer network this
process can be mapped to a system architecture.
In a system of virtual workers a failure of a node executing
main virtual worker can cause abnormal termination of a
whole program and to ensure its fault tolerance a distinct
approach should be used. In contrast to subordinates
fault tolerance being provided by execution of them on
different nodes in case of a main virtual worker failure
his closest subordinates should reelect him using the
algorithm of distributed consensus. Such an algorithm is
not completely reliable [5] and its use during
subordinates fault seems unpractical, however, in case of
a main virtual worker it is the only way of restoring system
to a healthy state.
In summary, a solution of a problem using computer
system involves processing of data and control flows
and these flows can be combined into a single sampled
stream. Each sample of this stream represents a single
mobile entity - a virtual worker composed of data and
code and capable of migrating between machines of a
system. Fault tolerance of virtual workers is provided by
rerunning failed tasks on different machines in case of
subordinates and by means of reelection a new principal
using distributed consensus algorithm in case of a main
virtual worker.

4. COMPARISON TO EXISTING
APPROACHES
Generalized computational model can be compared
to the existing approaches of distributed computations to
show its advantages and disadvantages and among
all these approaches there are two closest ones. The
first approach was an attempt to solve the problem of
distributed computations on the basis of computer system
architecture implementing so called macro pipelining
processing [6]. The second approach is based on
programming language implementing actors model of
distributed computations [7] and was a research in a
field of artificial intelligence. Other approaches are based
on an object-oriented and functional programming
languages and each of them has its own advantages
and disadvantages compared to generalized model.
Actors model was designed to describe interactions of agent
composing artificial intelligence systems and a notion of an
actor has much in common with a notion of a virtual
worker but there are also some discrepancies. First of all,
each actor upon receiving a message can react in one
of the three possible ways: create more actors, send
messages to other actors and change its state and reaction
to the next message whereas in generalized model there is
no notion of a message and a process of spawning
subordinate workers is combined with a process of
sending message. Moreover, such an approach is
considered uniform: “the most exciting of such models,
and the one using the greatest uniformity of
construction, is one in which the communications are

themselves actors” [8]. Second, actors model does not
provide the governing direction of interactions between
actors that leads to problem solution whereas the generalized
model uses hierarchy of virtual workers to ensure
convergence: every subordinate always reports results of
his work to his principal which ensures reaching one goal
by all virtual workers. Other properties of actors model
similar to the ones generalized model has: each model
describes arbitrary configured dynamic graphs of
actors (virtual workers), provides incremental
synchronization by means of a concurrent queues
(synchronization occurs only between communicating
entities and not between all the entities at once) and
describes computations with no restriction to a certain
system architecture. To summarize, generalized model
and actors model are similar in a way they represent
computation by interaction of unified entities and dissimilar
in ways of organizing these entities to solve a problem and
also in implementation of entity communications.
Much like a theoretical model a programming language
also represents a model of computations that represents
problem solution by composition of interacting objects or
functions and a notion of an object and function can be
related to a notion of a virtual worker. In object-oriented
programming languages problem solution is
accomplished by defining main control object that creates
subordinate objects, connects them in a single hierarchy
and launches their methods; this process is analogous to
building of virtual workers hierarchy and putting them in
a processing queue. In functional languages problem
solution is represented by composition of functions and
monads that are executed as a single pipeline which is
analogous to virtual workers queues. Moreover, some
functional languages already use hierarchy to facilitate fault
tolerance (Erlang supervisory trees) [11]. In both
programming paradigms object and function are
composed from data and code (each function has a
copy of its arguments) and that makes them
independent and, given appropriate implementation,
capable of migrating from one machine to another.
So, basic building blocks of object-oriented or
functional program are similar in terms of structure and
principle of operation to a notion of a virtual worker.
Traditionally, modern compilers can automatically find
data parallel regions of code [9] and integration of a
generalized model with compiler can broaden
possibilities of finding independent code regions and
facilitate not only parallel but also pipelined workloads.
Advantages and disadvantages of a generalized model can
be summarized as follows.
Advantages

• joint data and code migration

• incremental synchronization

• transparent transaction mechanics

• dynamic load balancing

• unified and simple building block of a program

• single source code for MPP and SMP architectures

Disadvantages

• usage of distributed consensus algorithm for main
virtual worker reelection

• inability to define optimal volume of data and code
to compose a single virtual worker

5. POSSIBLE APPLICATIONS

Possible application areas of the proposed model are twofold
and it can be used both as a base model of middleware
toolkit or as a primary model of computation in a software
application. Although, the first use case has not been
discovered yet, the model has found its natural fit in
scientific source code simulating multidimensional physical
phenomena (virtual testbed). Virtual testbed is a complex
system modeling simultaneous natural processes, their
interactions with each other and their interactions with a
dynamic object such as a ship in rough seas. Experience in
developing such numerical simulations shows that virtual
workers approach allows to factor initial problem to several
loosely-coupled components and tie them together in a
unified parallel way. In addition to this, this approach shows
comparable performance to conventional OpenMP
directives. So, the generalized model of computation can be
used in numerical modeling software and possibility of its
usage in distributed environment and its usage as a base of
middleware toolkits requires further investigation.

6. CONCLUSION
Generalized computation model describes one possible
approach of developing distributed applications which takes
into account deficiencies of existing concurrency techniques
and takes one step further towards implementing transparent
load balancing, providing fault tolerance and transaction
mechanisms. Given appropriate realization the model can be
used to create applications adapting to computer system
architecture, with configurable fault tolerant and load
balancing mechanisms and with a source code composed
from unified virtual workers specifications simplifying
development of programs.

ACKNOWLEDGEMENT
The research was carried out using computational resources
of Resource Center Computer Center of Saint-Petersburg
State University (T-EDGE96 HPC-0011828-001) and sup-
ported by Russian Foundation for Basic Research (project N
13-07-00747) and St. Petersburg State University (project N
9.38.674.2013).

REFERENCES
[1] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:
simplified data processing on large clusters."
Communications of the ACM 51.1 (2008): 107-113.
[2] Chang, Fay, et al. "Bigtable: A distributed storage system
for structured data." ACM Transactions on Computer
Systems (TOCS) 26.2 (2008): 4.
[3] DeCandia, Giuseppe, et al. "Dynamo: amazon's highly
available key-value store." ACM SIGOPS Operating
Systems Review. Vol. 41. No. 6. ACM, 2007.
[4] Lakshman, Avinash, and Prashant Malik. "Cassandra—A
decentralized structured storage system." Operating systems
review 44.2 (2010): 35.
[5] Fischer, Michael J., Nancy A. Lynch, and Michael S.
Paterson. "Impossibility of distributed consensus with one
faulty process." Journal of the ACM (JACM) 32.2 (1985):
374-382.
[6] V.M. Glushkov. Introduction to ASU. Kiev: Tehnika,
1974 (in russian)
[7] Hewitt, Carl, Peter Bishop, and Richard Steiger. "A
universal modular actor formalism for artificial intelligence."
Proceedings of the 3rd international joint conference
on Artificial intelligence. Morgan Kaufmann Publishers
Inc., 1973.

[8] Agha, Gul Abdulnabi. "Actors: a model of concurrent
computation in distributed systems." (1985).
[9] A.V. Bogdanov, I.G. Gankevich Practical Efficiency of
Optimizing Compilers in Parallel Scientific Applications //
Distributed Computing and Grid-Technologies in Science
and Education. Proceedings of 5th International Conference
— Dubna, — 2012
[10] Degtyarev A., Gankevich I. Efficiency Comparison of
Wave Surface Generation Using OpenCL, OpenMP and
MPI // Proceedings of 8th International Conference
«Computer Science & Information Technologies» —
Yerevan, Armenia, — 2011. — P. 248-251
[11] Armstrong, Joe. Making reliable distributed systems
in the presence of software errors. Diss. KTH, 2003.
[12] Flynn, M. (1972). "Some Computer Organizations
and Their Effectiveness". IEEE Trans. Comput. C-21: 948.
[13] Pérache, Marc, Hervé Jourdren, and Raymond
Namyst. "MPC: A unified parallel runtime for clusters
of NUMA machines." Euro-Par 2008–Parallel
Processing (2008): 78-88.
[14] An, Ping, et al. "STAPL: An adaptive, generic
parallel C++ library." Languages and Compilers for
Parallel Computing (2003): 195-210.
[15] Barak, Amnon, and Amnon Shiloh. "The
Virtual OpenCL (VCL) Cluster Platform."

