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ABSTRACT

We study statistical properties of 3D classical spin-glass 
under the influence of external fields. It is proved that 
in the framework of the nearest-neighboring model 3D 
spin-glass problem at performing of Birkhoff’s ergodic 
hypothesis regarding to orientations of spins in the 3D 
space, can be reduced to the problem of disordered 1D 
spatial spin-chains (SSC) ensemble where each spin- 
chain interacts with a random environment. The 1D 
SSC is defined as a periodic 1D lattice, where spins in 
nodes are randomly oriented in 3D space, in addition all 
they interact with each other randomly. For minimiza- 
tion of the Hamiltonian in an arbitrary node of the 1D 
lattice obtained recurrent equations and corresponding 
Sylvester’s criterion, which allow to find energy local 
minimum. On the bases of these equations the high- 
performance parallel algorithm is developed which al- 
lows to calculate all statistical parameters of 3D spin 
glass, including distribution of a constant of spin-spin 
interac- tion, from the first principles of the classical 
mechanics.
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1. INTRODUCTION

Spin glasses and in general disordered spin systems as 
models often are used for study of different complex 
natural and social phenomena in fields as diverse as 
physics, chemistry, theoretical computer science (combi- 
natorial optimization, traveling salesman, material sci- 
ence, biology (Hopfield model), population genetics (hi- 
erarchical coalescence), nanoscience, evolution, organi- 
zation dynamics, human logic systems, the economy 
(modelization of financial markets), etc. [1, 2, 3, 5, 6, 4, 7, 
8, 9, 10, 11, 13].
There are different theoretical and numerical methods to 
study of spin glasses and disordered spin systems in 
general. In all these approaches the main object of in- 
vestigation is a partition function in its standard, Gibbs’ 
representation. One of the important directions of 
investigation of partition function is the mean-field 
method. They, as a rule, are divided into two types. The 
first consists of the true random-bond models, where the 
coupling between interacting spins are taken to be inde-

pendent random variables [12, 14, 15]. The solution of 
these models is obtained by n-replica trick [12, 15] and 
has required the invention of sophisticated schemes of 
replica-symmetry breaking [15, 16]. In the models of 
second type, the bond-randomness is expressed in terms 
of some underlining hidden site-randomness and thus 
has superficial nature. It has been pointed out in works 
[17, 18, 19], however, this feature retains an important 
physical aspect of true spin-glasses, viz. that they are 
random with respect to the positions of magnetic 
impurities.
The problem of simulation 3D spin glass is a typical NP 
hard problem. Nevertheless, the solution of problem be- 
comes more difficult and even problematic when spin 
glasses are in states far from thermodynamic equilib- 
rium. In this case standard methods based on Monte 
Carlo simulations, as a rule, are not suitable for using. In 
this paper we study statistical properties of spin glasses 
at conditions when the time of an influence of external 
fields is much less of the characteristic relaxation times of 
a medium but much more of the response time of 
individual spins. The last means that we have a typical 
example when medium is in the nonequilibrium state 
which is impossible to study using a standard representa- 
tion of partition function, defined in the framework of 
Gibbs’ hypothesis. In conjunction with this, the im- 
portance of development of new approaches and corre- 
sponding parallel algorithms for solving problems of 3D 
spin-glasses in external field is obvious.

2. FORMULATION OF PROBLEM

The 3D spin-glass system (the width of the layer is
defined by the length of spin-chain which includes Nx
spins) in the framework of a nearest-neighboring model
can be represented by Hamiltonian:

H(Nx) = H(1)(Nx) +H(2)(Nx), (1)

where the first term;

H(1)(Nx) = −
Nx∑
i=1

Ji i+1S iS i+1,

describes the disordered 1D chain of spatial spins (CSS)
(below we will name the central spin-chain).
The second term:

H(2)(Nx) = −
Nx∑
i=1

UiS i, Ui =

4∑
iσ=1

Ji iσS iσ + hi,

describes a random environment of the central 1D CSS
(see on Fig. 1) and the external field hi. Note that;
||hi|| = hi = h0 cos(i2π/Nx) designates an external field



Figure 1: The 1D CSS with the random envi-
ronment. The random environment consists of
spins denoted by symbols ⊗.

which is propagated by direction of x-axis, h0 its am- 
plitude and Nx is the number of spins into standing wave 
formed by the external field. In (1) Ji i+1 and Ji iσ are 
random interaction constants between arbitrary i and i 
+ 1 spins and between i and iσ spins, correspondingly, Si, 
Si+1 and Siσ are spins (vectors) of the unit length ||Si|| = 
1, which in O(3) space are orientated randomly. The 
main aim of our study is the development of a theoreti- 
cal approach and the relevant algorithm which will allow 
to exactly compute all statistical parameters of classical 
3D spin glass, including the distribution of spin-spin in- 
teractions’ constant, at the influence of external fields. 
Based on general physical considerations we need to con- 
struct such spins configurations where each spin in chain 
will be in a state of a local energy minimum that obvi- 
ously will provide a quasistability of a spin-chain. Given, 
that each spin is represented by three projections; Si = 
(xi, yi, zi), then we can find equations which define the 
condition of an extremum of Hamiltonian (1) in the node 
i-th:

∂H

∂xi
= 0,

∂H

∂yi
= 0. (2)

Recall that the equation ∂H/∂zi = 0 is not considered 
since it is linearly dependent on the previous two 
equations due to the fact that the length of a spin is a 
constant and equal to unit.
Theorem. The Hamiltonian (1) is a solution of equa- 
tions (2) and it has an extremum in the i-th node if the 
spin in the (i + 1)-th node has a form:

Si+1 = −Ji−1,iSi−1 + Ui

Ji,i+1
+ Si

{
(Ji−1,iSi−1 + Ui)Si

Ji,i+1

±
√
J2
i,i+1 − ||Si × (Ji−1,iSi−1 + Ui)||2

Ji,i+1

}
, (3)

where the constant of spin-spin coupling satisfies an 
inequality:

J2
i,i+1 ≥ ||Si × (Ji−1,iSi−1 + Ui)||2 = A2

i . (4)

The energy of Hamiltonian in the i-th node will be min- 
imal if the following inequalities would be satisfied:

Axixi > 0, AxixiAyiyi −A
2
xiyi > 0, (5)

where Aηiηi = ∂2H/∂ηi2 and Axiyi = ∂2H/(∂xi∂yi). Now 
we can calculate the second derivatives of Hamiltonian:

Aηiηi =
(
η2i + z2i

)
δi, Axiyi = xiyiδi, (6)

Input 
Ω1, … ,Ω𝑗 , … ,Ω𝑛 = 

𝑆0, 𝑆1, 𝐽0,1 1
𝑆0, 𝑆1, 𝐽0,1 𝑗… … 𝑆0, 𝑆1, 𝐽0,1 𝑛

1-st layer . 
. 

𝑁𝑥-th layer 

Output 
𝐹 𝜀 , 𝐹 𝑝 , 𝐹  𝐽 , 𝜀, 𝜀2, 𝑝, 𝑝2, 𝐽, 𝐽2 

Calculate 
𝑆2+, 𝐽1,2 𝑗

Calculate 
𝑆2−, 𝐽1,2 𝑗

Random 
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𝑆2, 𝐽1,2 𝑗

Figure 2: The algorithm of parallel simulation
of statistical parameters of a non-ideal ensemble
of disordered 1D CSS.

where δi =
(
zi−1Ji−1,i + zi+1Ji,i+1 + uzi

)
z−3
i and uzi is

the projection of vector Ui on z-axis. Using (6) the 
explicit forms of inequalities can be easily found (5):

Axixi =
(
x2i + z2i

)
δi ≥ 0,

AxixiAyiyi −A
2
xiyi = z2i δ

2
i ≥ 0. (7)

As can be seen the second inequality of (7) is always
satisfied.
Finally, taking into account (4) the conditions of local
minimum of the Hamiltonian (1) in the i-th node can
be written in the form:

δi ≥ 0, |Ji,i+1| ≥ Ai. (8)

In our previous work [20] it was shown that the un- 
perturbed by external fields 3D spin glass at condition 
when in the reciprocal lattice regarding of directions of 
spins is implemented conditions for using of Birkhoff’s 
ergodic hypothesis, the initial problem can be reduced to 
the problem of a non-ideal ensemble of 1D CSS. Recall 
that when we say that the ensemble is non-ideal, we 
mean that the 1D spin-chain interacts with its random 
environment consisting of four disordered 1D 
spin-chains. As shows analysis at switching of weak 
external fields, the possibility of the reduction of 3D spin 
glass problem to the problem of non-ideal ensemble of 1D 
spin-chains remains valid. In a non-ideal ensemble, each 
classical spin-chain is characterized by two parameters, 
energy and magnetization. The last means that many 
important properties of statistical ensemble can be 
studied in the space of an energy ε and magnetization p, 
that equivalently constructing the dis- tribution function 
for an energy and magnetization of non-ideal ensemble.
Thus, the main problem is concluded in a solution of 
direct problem, namely the numerical simulation of the 
non-ideal ensemble of disordered 1D CSS.
Now we have constructed the distribution function of an 
energy and magnetization of the non-ideal ensemble. In 
this connection it is useful to divide axis of an energy, ε 
and magnetization, p into small regions 0 > ε0 > ... > εn, 
(0 > p0;x > ... > pn;x), (0 > p0;y > ... > pn;yx) and (0 > 
p0;z > ... > pn;z ), where n >> 1. The number of
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Figure 3: Distribution of spin-spin interaction
constant in a non-ideal ensemble consisting of
1D spin-chains with the length 100, depending
on an external field.

stable 1D CSS configurations with the length of Lx in
the range of energy [ε− δε, ε+ δε], where |δε| << 1 and
polarizations range [px − δpx, px + δpx], |δpx| << 1,
[py − δpy, py + δpy], |δpy| << 1 and [pz − δpz, pz +
δpz], |δpz| << 1 will be denoted by MLx(ε) while the
number of all stable 1D CSS configurations - corre-
spondingly by symbol Mfull

Lx
=
∑n

i,j=1
MLx(εi,pj). Ac-

cordingly, the multidimensional distribution function of
non-ideal ensemble 1D SSC may be defined by the 
following formulas:

FLx(ε,p; g) = MLx(ε,p; g)/Mfull
Lx

, (9)

where the distribution function is normalized to unit:

lim
n→∞

n∑
i,j=1

FLx(εi,pj ; g)δεjδpj =

∫
d3p

∫ 0

−∞
FLx(ε,p; g)dε = 1, (10)

where δpj = δpj;xδpj;yδpj;z and g denotes a set of an
external field’s parameters.

3. SIMULATION ALGORITHM

The strategy of numerical simulation consists of the 
following steps. At first, we randomly sets configura- 
tions of four disordered 1D CSS without checking of 
spin-chains under formulas (8). Note that these four 
spin-chains form random environment in which we should 
construct central spin-chains (see Fig 1). On the second 
step a set of random constants of spin-spin interaction is 
generated, that characterizes the interactions between 
the random environment and the considered 1D CSS. 
Recall that the interaction constants as well as in a case 
of unperturbed by external fields 3D spin-glass [20], are 
generated by Log-normal distribution. Now when the 
random environment and its influence on disordered 1D 
SSC are defined, we can go over to the computation of 
spin-chain under the influence of external fields which 
must satisfy the conditions of local energy minimum (8). 
The central spin-chain consistently, node by node is being 
computed. Note that in each node two solutions are found 
(see the scheme on Fig 2, they are designated by symbols 
+ and −), however, at continuation of simulation of the 
spin-chain we in each node leave only
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Figure 4: The energy distributions in a non-ideal
ensemble depending on amplitude of an external
field.

one solution which is randomly being selected. Finally in 
the last stage of simulation with the help of formulas (9)- 
(10) we calculate distributions of corresponding 
parameters which characterize the statistical properties 
of the 3D spin glass under the influence of external fields.

4. NUMERICAL EXPERIMENTS

Note, that calculations of 3D spin glass or more cor- 
rectly a non-ideal ensemble of 1D CSS are done for 
spin-chains having the length 100. This approach con- 
siderably reduces the amount of needed computations 
and gives us a possibility to solve a conceptually NP hard 
problem as in particular is 3D spin glass problem and to 
construct all statistical parameters which describe 3D 
spin glass. It is analytically proved and by parallel sim- 
ulation is shown, that the distribution of a spin-spin in- 
teraction constant cannot be described by normal Gaus- 
sian distribution model (Gauss-Edwards-Anderson dis- 
tribution) (see Fig. 3). As shows an analysis, the curve 
of distribution is a non-analytical function and probably 
it can be approximated precisely by Lévy skew alpha- 
stable distribution function. As shown by calculations, 
at the increasing of the number of spin-chains ergodic- 
ity in a known sense comes already at ∝ Nx2. As we can 
see from Fig. 3, the distribution of a spin-spin interaction 
constant depends on an amplitude of the external field, 
however its characteristic structure does not change. In 
the work are also presented the energy distributions in a 
non-ideal ensemble depending on an external field (see 
Fig. 4). As calculations show, for a non-ideal ensemble 
consisting of 10000 spin-chains, the dimensional effects 
practically disappear and the energy distributions F (ε; 
g) have one global maximum (see Fig. 4). The maximum 
of function of distribution, at increasing of amplitude of 
an external field moves in area of lower negative values of 
energy. As to the magnetization distributions, as shows 
computation at influence on media with the weak 
external field the distribution of magnetization in all 
coordinates frustrates. After the procedure of averaging 
of magnetization by fractal structures [21], we find the 
average values of magnetization on the corresponding 
coordinates, depending on the amplitude of an external 
field. As we can see at inclusion of an external field a spin 
glass on all directions is magnetized, however, 
magnetization steadily goes up on direction of propaga-
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Figure 5: The average value of polarization on
corresponding coordinates depending on an ex-
ternal field.

tion of an external field, with increasing the amplitude of 
an external field (see Fig. 5).

5. CONCLUSION

Using the proof about the equivalence of models of 3D 
spin glass and non-ideal ensemble 1D SSC we have devel- 
oped a new parallel algorithm for simulation of statis- 
tical properties of 3D spin glasses under an influence of 
external fields. The central idea which lays in a based of 
numerical simulation is a method of construction of 
stable spin-chains node by node with consideration of 
external random (random environment) and regular 
(external fields) influences. For realization of this idea we 
have used a model of nearest-neighboring Hamiltonian of 
Heisenberg. The developed algorithm allows on a basis of 
first principles of classical mechanics to calculate all 
statistical parameters of 3D spin glasses including the 
distribution of constant of spin-spin interaction under 
external fields. An important peculiarity of the 
developed method is the possibility of an exact simulation 
of 3D spin glasses including situations when system is far 
from thermodynamic equilibrium and we cannot use well 
known representations for the partition function which 
are based on Gibbs’s hypothesis. Let us note, that the 
last is very important for investigation properties of 
disordered spin systems on a nano-scales of space-time, 
the development of which is closely connected with the 
development of modern technologies and in general of 
nanoscience.
Finally let us note that the programm for numerical 
simulations of 3D spin glasses is created using GPU 
technologies which achieves high performance parallel 
calculations for aforementioned problems.

REFERENCES

[1] K. Binder and A. P. Young, Spin glasses:
Experimental facts, theoretical concepts and open
questions, Reviews of Modern Physics, pp. 801-976,
1986.
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