
Metadata-driven task scheduling in computer clusters

Ivan, Golubev
Electrotechnical University

Saint-Petersburg, Russia

e-mail: IAGolubev@mail.eltech.ru

Mikhail, Kupryianov
Electrotechnical University

Saint-Petersburg, Russia

e-mail: mikhail.kupriyanov@gmail.com

ABSTRACT
Efficient resource utilization has always been a chal-
lenging task in distributed data processing applications.
This article is an attempt to formalize the task of job
scheduling in heterogeneous computer clusters. An ob-
servation of existing correlation between job character-
istics and resource requirements is used to estimate re-
source utilization metrics and assign jobs to cluster nodes.
A task to node assignment method is outlined.

Keywords
Computer grid, assignment problem, task scheduling.

1. INTRODUCTION
Centralized resource control is usually carried out by
so called resource allocation (resource planning) system
[1] or job scheduler (job planning system) [2], which is
usually referred as a middleware: it controls the low
level resources, and takes the high level applications’
requirements into account.

To do this the system needs to monitor the current re-
source load in order to assign idle resources to a newly
submitted job [1].

Thus, the resource planning system contains the follow-
ing components [2]:

1. job scheduler, performing a task-resource match-
making

2. information service, giving an info about a job ex-
ecution progress and resources’ state.

To handle resources and jobs the scheduler uses re-
source allocation (planning, assignment) methods based
on data, provided by the information service.

The problem of jobs scheduling is comprised of resource
allocation to jobs and defining an execution order [3].

The following aspects should be taken into account in a
job assignment policy:

1. cluster nodes heterogeneity

2. jobs requirements [1] and characteristics

3. job execution history.

Considerable amount of research done in forecasting re-
source utilization [4], is based on statistical modeling.
This work uses the execution history to build prediction

models, that is a quite common approach in the field of
data processing with computer clusters and cloud sys-
tems.

The next section gives a formal description of the tasks
scheduling problem in computer clusters.

2. TASK FORMALIZATION
Let T = {t1, t2, . . . , tn}, n ∈ N, be a set of jobs (tasks),
where each task is characterized by certain metadata
(attributes set): A = {a1, a2, . . . , as}, s ∈ N . Each at-
tribute ai is a discrete value:

ai ∈ Vi = {v1, v2, . . . , vr}, r ∈ N.

Let K be a set of processing nodes (to simplify let the
amount of nodes be equal to tasks amount n), where
each node has certain resource characteristics - ex. threads
and memory amounts:

∃K = {k1, k2, . . . , kn}, n ∈ N : ki = {threads,memory}.

threads and memory are also discrete values. For ex-
ample, they might take the following values:

threads ∈ {1, 2, 4, 8},memory ∈ {128, 256, 512, 1024}.

During the data processing the task scheduler assigns
tasks T to cluster nodes K:

F : T 7→ K,

where F maps a task ti ∈ T to a processing node kj ∈
K.

Each assignment (ti, kj) has some cost ci,j . The entire
mapping of tasks set T to nodes set K is described by
a cost matrix:

C =


c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n

...
...

. . .
...

cn,1 cn,2 · · · cn,n

 .

The task scheduler assigns one node to a given job and
this job occupies the selected node completely, while
different jobs are processed concurrently. Hence, the
mapping F , defined by the resource planning system can
be described by the assignment matrix:

W =


w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n

...
...

. . .
...

wn,1 wn,2 · · · wn,n

 .

wi,j =

{
0 if task i is not assigned to node j

1 if task i IS assigned to node j.

The following constraints hold for the matrix:

n∑
i=1

wi,j = 1,

n∑
j=1

wi,j = 1, i, j ∈ N.

- a bijection between tasks and nodes is defined.

The main objective of the resource planning system is
to pick coefficients wi,j ∈ {0, 1} of assignment matrix
such, that the total cost is minimized:

n∑
i=1

n∑
j=1

ci,j · wi,j = sum −→ min.

The optimal assignment matrix can be found from the
cost matrix using existing algorithms of solving the as-
signment problem (i.e. bipartile graph matching), most
notably the Hopcroft-Karp algorithm [5] in O(n3) time.

The main problem here is that values ci,j are unknown,
and should be estimated. The next sections describe
such an estimation.

3. COST CALCULATION ON THE BA-
SIS OF EXECUTION METRICS

This section clarifies, what is the cost value ci,j of run-
ning selected job i on processing node j, and how this
value can be calculated from the execution metrics.

Each job execution in computing cluster gives certain
metrics M = {m1,m2, . . . ,mk}, k ∈ N . The most typi-
cal examples are:

- average processor load,

- average memory usage,

- elapsed time.

These metrics characterize time and resource expenses
associated with tasks execution and can be used to as-
sess the execution cost: execution cost is a function,
that depends on metrics and maps on interval [0, d]:

ci,j = F (M) = F (m1,m2, . . . ,mk) −→ [0, d], d ∈ R.

Any function might be used as F , for example:

F (m1,m2, . . . ,mk) =

a1 ·m1 + a2 ·m2 + · · ·+ ak ·mk =

k∑
i=0

ai ·mi,

where ai ∈ [0, 1] - weight coefficient, that reflects the
contribution of each metric to the final cost.

The simplest case is F =
∑k

i=0 mi - where each metric
is treated identically.

It is often useful to normalize all the values ci,j to map
all the cost estimations to standard interval [0, 1], be-
cause the only important to the task scheduling is the
relative cost of running task i on cluster node j, not the
absolute value. This can be done with a simple formula:

cnorm
i,j =

ci,j − cmin

cmax
.

In the next section under the execution cost ci,j the
cnorm
i,j is implied.

4. COST ESTIMATION ON THE BASIS
OF METADATA

The previous section covered how execution cost can be
calculated when execution metrics are available. While
this approach is perfect when dealing with a training
sample of jobs, it makes no sense for real tasks since
metrics are only available as a result of execution. On
the other hand, cost matrix calculated for the train data
is not completely useless, it might be used to estimate
cost for the new jobs.

So the main question here is how execution cost for the
new (test) jobs can be estimated on the basis of cost
matrix of training sample of jobs.

In order to do this we have to establish the relationship
between a new test task tnew and old training task told,
where the latter has cost value ctold and the same node
k is considered for both tasks. In other words, it is
required to find similar task(s) and use their associated
cost values to estimate cost for a new job cnew.

Tasks can be compared using metadata, - the attributes,
associated with each task, as it was defined in section
2: A = {a1, a2, . . . , as}, s ∈ N .

Attributes together with some distance function allow to
find similarity between tasks. For example, the Ham-
ming distance function might be used:

D(ta, tb) =

s∑
i=1

(|ai| − |bi|) ,

where ai and bi - attributes for jobs ta and tb, corre-
spondingly. Efficient data structures such as kd-trees
might be used on this step to find similar tasks in lin-
earithmic time.

In a broader sense, such tasks comparison is a kind of
data classification, where tasks’ metadata are used as the
classification attributes. However, it is usually im-
practical to build a global approximation function, - a
local approximation by the nearest neighbours will usu-
ally suit [6].

When distance to all tasks for a given task has been cal-
culated, a subset T of the most similar tasks is chosen. In
the simplest case one task with the least distance is
selected.

Then the execution cost for a new task tnew is estimated
by an average of cost values for the found set T :

ctnew =

∑n
i=1 ci

n
, ci ∈ T.

In the end, after all the above actions each new task
has the associated cost vector, showing the relative cost
of running this task on all the available cluster nodes.
These vectors together form a cost matrix, which in turn
is used to distribute tasks between nodes in an optimal
way using the Hopcroft-Karp assignment algorithm.

5. RESULTS
The above described approach to planning jobs in com-
puter clusters can be summarized in the following way.
To build a model:

- select a train set of jobs,

- execute these jobs on all types of cluster nodes to
gather metrics,

- map metrics to normalized cost values.

To assign new jobs to cluster nodes:

- for each task find similar tasks (nearest neigh-
bours) in the train set,

- estimate a cost matrix by means of cost values of
similar tasks,

- retrieve assignment matrix by Hopcroft-Karp al-
gorithm,

- launch tasks on cluster nodes according to the as-
signment matrix.

This method allows resource planning and task schedul-
ing that takes tasks metadata and nodes characteristics
into account and might give performance benefits for
certain applications where such information is available.

REFERENCES
[1] P. Endo, A. D. A. Palhares, N. Pereira,

G. Goncalves, D. Sadok, J. Kelner, B. Melander,
and J.-E. Mangs, “Resource allocation for
distributed cloud: concepts and research
challenges,” Ieee Network, vol. 25, no. 4, pp. 42–46,
2011.

[2] M. Chtepen, F. Claeys, B. Dhoedt, F. De Turck,
P. A. Vanrolleghem, and P. Demeester,
“Performance evaluation and optimization of an
adaptive scheduling approach for dependent grid
jobs with unknown execution time,” in 18th World
IMACS Congress and MODSIM09 International
Congress on Modelling and Simulation,
Proceedings, pp. 1003–1009, 2009.

[3] J. M. G. Barbosa and B. D. R. Moreira, “Dynamic
job scheduling on heterogeneous clusters,” in
Proceedings of the 2009 Eighth International
Symposium on Parallel and Distributed Computing,
ISPDC ’09, (Washington, DC, USA), pp. 3–10,
IEEE Computer Society, 2009.

[4] M. T. Imam, S. F. Miskhat, R. M. Rahman, and
M. A. Amin, “Neural network and regression based
processor load prediction for efficient scaling of grid
and cloud resources,” in 14th International
Conference on Computer and Information
Technology (ICCIT), IEEE, 2011.

[5] J. Hopcroft and R. Karp, “An n. 5/2 algorithm for
maximum matchings in bipartite graphs,” SIAM
Journal on Computing, vol. 2, pp. 225–231, 1973.

[6] P. K. Janert, Data Analysis with Open Source
Tools - a Hands-on Guide for Programmers and
Data Scientists. O Reilly, 2011.

