
Design Stages of Self-Organizing Distributed Systems

Mikhail Kupriyanov

Electrotechnical State University

Saint-Petersburg, Russia

e-mail: mikhail.kupriyanov@gmail.com

Andrew Kochetcov

Electrotechnical State University

Saint-Petersburg, Russia

e-mail: gaidn@yandex.ru

Abstract. The questions of self-organizing

distributed systems design are considered in this

article. Ten main stages of such design are
described. Special attention is made for the

possible issues at every stage and methods for

resolving them.

The design of any complex systems, which

include self-organizing, should be conducted

on the models of such systems. In the course of

the research a model of self-organizing

systems was created, and the software to

simulate the processes of self-organization on

the basis of this model was developed,

descriptions of which can be found in [1,2].

Note that the feature of the design of self-

organizing distributed systems (SODS) is the

need to carry out, in general, a large amount of

preparatory work, not directly related with the

introduction of the model in the simulator, or

starting the process of modeling. The following

report focuses on all stages of SODS design, as

well as the implementation of these steps on

the simulator.

Step 1. Defining the goals of the system,

the formation of the target functional. Any

self-organizing system, by definition, must

have a purpose of its operation. There is some

difficulty in defining the goals of the SODS

functioning due to the following key issues:

- Goals should have a clear mathematical

formulation, and to be represented by a real

numbers;

- The system may have several purposes, some

of which may carry conflicting nature. At this

stage, one has to be formed - the overall goal of

the entire system.

- The purpose of the system must be

represented in the form of a mathematical

function whose arguments are the parameters

of the elements that constitute the system, and

the parameters of the system as a whole. Note

that all of these parameters should also have a

numerical interpretation.

After the system goal definition is made, it

is necessary to form the mathematical model of

the system goal - the target system functional.

It is necessary to take into account the

following factors:

- The dimension of controlled variables

should be minimal, otherwise the running time

of self-organization can be not acceptable;

- All variables in this function must be

normalized and have the same measurement

units.

Step 2. System topology design. At this

stage we should build the common model of

the distributed system. We assume that the

SODS has a tree structure, otherwise, if we

have connections in the element graph forming

some cycles, further advice may prove to be

incorrect. It must also be prepared to answer

the following questions:

- Determiningof how many levels of the

hierarchy has the system;

- Determining the number and location of

the nodes for information processing, including

nodes where the self-organization processes are

possible to start;

- Develop or select a backup method for
the system elements;

- Defining the connections between

the elements of the system.

In the SODS simulation program the model

is represented by two components: a graphical

and a tree. The user has the option to add /

remove a node, and the absence of cycles and

presence of the system root are monitored

(Figure 1).

Figure 1 - Representation of the SODS tree in

the simulator.

It will be appreciated that all elements of

SODS can be classified as either elementary

objects (EO) or an intermediary element (IE).

For EO knowledge of its possible functions is
needed; for IE at this time, moreover, it is

needed to determine its communication

capabilities: maximum number of objects that

can be connected to it.

When we add new items to the system tree,

for each object we should specify its name,

type and function. The object type is selected

from the predefined set of object types that can

change in an arbitrary manner by the user and

stored in the library. The type library contains

information about the cost value of adding an

element of this type, the maximum number of

its children (for IE), and provides a set of

functions that can implement this object.

The function of the object is selected from a

pre-determined set of features that can be

modified by the user and contained in the

function library. Function Library contains a

list of all functions that can be implemented by

any object in the system. Note that the

elements of intermediary library function

contain a set of so-called bundle of features

that consolidate in some way the results of its

child elements.

After specifying the types of all elements

in the system and all links, the topology of the

system is considered as fully determined.

Step 3. Selection or design of

communication protocols for interaction

between the system elements. This problem

occurs in self-organizing distributed systems,

information exchange in which is due to send

and receive messages. Any system of this kind

is characterized by the presence of various

kinds of failures and malfunctions that results

in overall coherence of the entire system likely
to be at risk.

To prevent this kind of mismatch processes

at every system element they should

periodically save their state on a sustainable

medium. This process is called "taking a local

checkpoint." To maintain a consistency of the

whole system, with inter-process

communication it is needed to involve special

communication protocols. The result of such

protocol is to define a global control point

(GCP) of the entire system - a common,

consistent status of all elements forming the

system. Upon the occurrence of failure in the

system, its state is restored from the most

recent GCP. The goal of this design phase is to select

such protocol of taking control points, or create

it. We will further imply that the protocol is

already integrated into the communication

subsystem, and therefore making a connection

between two objects in the simulator, we

believe that the problem of the system

consistent state is solved.

Step 4. Defining the parameters of

system elements. The function of each system

element contains a set of controlled parameters.

When we set these parameters, we should

consider the following key points:

- All parameters must be normalized. This
allows to avoid the implementation of

parametric self-organizing algorithms of many

computational problems, such as problems of

the small difference of large quantities or

accumulation of errors for small quantities;

- Qualitative assessment should be

translated into quantifiable;

- For stochastic parameters it is necessary

to determine what mathematical abstraction

will be used: calculated mean value option or

calculation for the worst case;

- The removal of restrictions on the

parameters by changing the variables.

In the simulator for all the required

parameters Parameter Library is used, so the

user can modify and supplement any of them.

For each parameter, we could specify its

name, range, initial value, and indicate that it

may take part in self-organization processes.

Step 5. General self-organization

concept development. After setting the system

structure and all its components, it is necessary

to determine what kinds of self-organization

(SO) and in what sequence it can be run in the

system for the implementation of the objectives

laid down in it. A typical order of starting the

appropriate mechanisms looks like: parametric

SO → functional SO → structural SO, but it

can be changed depending on the specifics of

particular SODS. Another objective of this

phase is to define a list of nodes that can run

the mechanisms of self-organization over their

descendants. Such parallelism gives a

significant effect on productivity in systems

containing large number of elements, where

the information process in one central node is

associated with a longer time and hardware

costs. There is a need to develop criteria to

judge the success of the ongoing processes of

self-organization. The following three points

should be developed in case of relevant type

self-organization existence in the system.

Settings allow the simulator to include /

exclude any kind of self-organization, and

change their order.

Step 6. Developing mechanism of

parametric self-organization. Choosing a

family of parametric self-organization

algorithm depends on:

- The dimension of the controlled parameters

vector;

- The kind of target system function;

- Required convergence rate of the algorithms;

- Acceptable amount of computation;

- Specificity of a particular task.

During the research two methods of

parametric optimization were chosen: method

of cyclic coordinate descent and exponential

relaxation. This choice is due to the versatility

of the algorithms and ease of preparation tasks

for computation. Adapting the speed of

convergence of implemented algorithms can be

achieved using a variety of strategies that could

significantly speed up the process of finding

extreme, depending on the specific task.
Step 7. Developing mechanism of

functional self-organization. If in the system

functional self-organization is presented, the

function is chosen from some set of

functions. The recommended solution is

to offer the system to use the results of

past successful implementations of functional

self-organization. In this case, the function

selection is determined by its priority

formed on the basis of the experience gained.

Step 8. Developing mechanism of structural

self-organization. Structural self-organization

is associated with the hardware cost, so its

implementation should be approached

very carefully. In the simulator three types of

changes are implemented in the structure of the

system:

- Changing types of elements in which there is

no change in the system topology;

- Tree reconfiguration, in which the location of

some elements is changed to more

advantageous in terms of growing the target

functional value;

- Addition of new elements, in which the

system topology and it's composition

of elements are changed.
Application of each of these three types of

algorithms must be based on the particular

system specificity and be economically

feasible.
In the simulator for the purpose of

determining the place to add new elements two

parameters were introduced: the cost of adding

the element of appropriate type, and the

maximum number of children for IE. By

varying these parameters in the proper range, it

is possible to calculate the many combinations

of the elements in the network system, to assess

their appropriateness, and choose the most

appropriate one.
Step 9. A series of experiments on the

simulator. Once the model of SODS,

identifying all the mechanisms of self-

organization and the corresponding algorithms

was built, it is possible to run the procedure of

system time simulation. Program settings

include the choice of modeling time scale and

display the values of specific elements. In the

left part of the window the program displays

the results of self-organization procedure with
the corresponding type and the moment of time

at which it was affected. At any time, the user

can interrupt the modeling and change the

structure of the model.

Step 10. The analysis of simulation

results. Based on these experiments the

developer can take the following basic

solutions:

- A system copes with its task;

- A system copes with its task, but the

degree of structural, functional or parametric

change is too high;

- The system cannot cope with the task, or

the degree of changes in the implementation

processes for self-organization is unacceptable.

Depending on making judgments the developer

has the right to change the purpose of the

system, the parameters of the topology, can

include/exclude the required forms of self-

organization, or make a decision of

inappropriate use of the system to solve the

problem.

After the decision, all the previous stages

could be repeated iteratively.

References

[1]. M.S.Kupriyanov, A.V.Kochetkov “Simulation of

self-organizing systems.”, International Conference on

Soft Computing and Measurements. St. Petersburg., pp.

57-60, 2008

[2]. M.S.Kupriyanov, A.V.Kochetkov “The use of

parametric optimization techniques for self-organization

of distributed systems”, International Conference on Soft

Computing and Measurements. St. Petersburg., pp. 144-

148, 2008

