
The Investigation of Models of Self-Organized Systems by
Parallel Programming Methods Based on the Example of an

Abelian Sandpile Model

Vahagn, Poghosyan
Institute for Informatics and

Automation Problems NAS RA,
0014 Yerevan, Armenia

e-mail: povahagn@gmail.com

Suren, Poghosyan
Institute for Informatics and

Automation Problems NAS RA,
0014 Yerevan, Armenia

e-mail: psuren55@yandex.ru

Hayk, Nahapetyan
Institute for Informatics and

Automation Problems NAS RA,
0014 Yerevan, Armenia

e-mail:
hayknahapetyan@yahoo.com

ABSTRACT
In this work the issues of study and behavior model-
ing of self-organized systems by means of paralleliza-
tion algorithms in multiprocessor systems are observed.
In particular, the software systems created on the base
of a developed algorithm make a transition of Abelian
sandpile model in square lattice from unstable state to a
stable one by means of parallel topplings of nodes. Soft-
ware programming is implemented by means of CUDA
and OpenMP technologies. A graphical representation
of test results carried out on processes with various ca-
pacities and video cards is available here. The obtained
graphic curves enable researchers to make a comparative
analysis, and depending on the model sizes, cores and
the number of available processors, to choose an appro-
priate program structure performed in optimal period
of time.

Keywords
Abelian sandpile model, parallel programming, cellular
automata.

1. INTRODUCTION
The concept of self-organized criticality was proposed
by Bak, Tang and Wiesenfeld in 1987, and has given
rise to growing interest in the study of self-organizing
systems. Bak et al argued that in many natural phe-
nomena, the dissipative dynamics of the system is such
that it drives the system to a critical state, thereby lead-
ing to ubiquitous power law behaviors. This mechanism
has been invoked to understand the powerlaws observed
in turbulent fluids, earthquakes, distribution of visible
matter in the universe, solar flares and surface rough-
ening of growing interfaces [1,2].

The Sandpile models being a class of cellular automata 
are among the simplest theoretical models which show 
selforganized criticality. An especially nice subclass con-
sists of the so called abelian sandpile models (ASM) [3].

There have been many numerical[4, 5, 6] as well as an-
alytical[7, 8, 9] studies of the ASM.

In numerous works in the absence of analytical rela-
tions of various physical characterizers different meth-
ods of statistical analysis have been applied for cal-

culation or verification of hypothetical and analytical
expressions. By means of numerous independent ex-
periments changing the lattice sizes and the number of
the filled sand grains in sandpile models, a lot of sta-
tistical data were obtained, on the basis of which (in
particular, by the method of Monte Carlo) the graphic
curves of the studied characterizers were built. The pro-
gram, modeling the independent experiment, was con-
currently performed on a cluster system with separate
memory nodes. The lack of such a system, the demand
of accurate calculation of physical characterizers that
would dramatically increase the lattice sizes, as well as
time constraints for calculations put forward not only
a project realizing an independent experiment [10], but
also the requirement for parallelization of modeling al-
gorithm. Now we shall present the formal description
of the sandpile model.

Consider an undirected graph G = (V,E) with vertex
set G and edge set E . A random variable hi, which
takes the integer values, is attached to each site i ∈ V ,
representing the height of sand at that site. The collec-
tion of heights hi ∈ V defines a configuration CT of the
system at a given discrete time T .

Each vertex i of the graph G is described by its maximal
allowed height hmax

i . A configuration is called stable if
all heights satisfy hi < hmax

i .

We consider two types of vertices - closed and open. If
hmax
i = deg(i) a vertex is called closed, and a vertex i

is called open if hmax
i > deg(i) . Here deg(i) indicates

the degree of i , the number of neighboring vertices of
i.

The dynamics of the system is defined by the following 
rules. Consider a stable configuration CT at a given time 
T . We add a grain of sand at a random vertex i ∈ V by 
setting hi → hi + 1 (we assume that the site is chosen 
randomly with a uniform distribution on the set V ). 
This new configuration, if stable, defines CT +1 . If hi 

is bigger than hi
max , the site becomes unstable and 

topples, losing hi
max grains of sand, while all neighbors 

of i receive one grain. Note that if the vertex is open the 
system loses grains. During the toppling of the closed 
vertices, the number of grains is conserved.

Note that a toppling of a vertex may cause some of its
neighbouring vertices to become unstable. In this case
they also topple according to the same toppling rule.
Once all unstable sites have been toppled, a new stable



configuration CT+1 is obtained.

If the finite connected graph G has at least one open
vertex, then all vertices become stable after finite num-
ber of topplings, and the new stable configuration is
independent of the order of topplings. Therefore the
dynamics is well defined.

Let aˆi be an operator, which acts on sandpile configura-
tions and adds a grain at site i . It can easily be shown 
that âiâj = âj âi . This is the reason why the sandpile 
model is called Abelian.

Now consider the Abelian sandpile model on the fi-
nite n × n square lattice L with open boundary con-
ditions, for which we have hmax

i = 4 for all vertices
i ∈ V . Therefore all internal vertices are closed, while
all boundary vertices are open.

The question is to find observables of the Abelian sand-
pile model during long-time evolution and in the limit
of large lattices. Namely, the average height is 3.125.
Our aim is to write efficient algorithm to perform sim-
ulations for high-precision computations.

In different topological spaces in the base of the method
proposed for parallel calculations of physical character-
izers of Sandpile models lies the concept of parallel im-
plementation of topplings with vertex surfaces of the
graph describing the space. We have developed a paral-
lel description of technical implementation for a square
lattice and Tor. It was applied to the real-time super
accurate calculation of one of the important physical
characterizers with node average density. Now let us
give the algorithm description of toppling paralleliza-
tion.

2. THE ALGORITHM DESCRIPTION
OF TOPPLING PARALLELIZATION

Figure 1: Example of complete coverage with
independent vertices

The nodes will be called independent, if they do not
have a common neighbor. To perform parallel topplings,
concurrently toppled vertices should meet the require-
ment of being independent. Division of the set of square
lattice nodes into a set of independent vertices is carried
out in the following way. Let us introduce an informa-
tion field (ID) for vertices, according to which the col-
oring of vertices will be defined. The vertex ID, accord-
ingly the color as well will be defined by (i+ 2j) mod 5
where 0 ≤ i < n and 0 ≤ j < n private formula, where i
and j are considered to be arguments defining the posi-
tion of the given vertex in the lattice. Taking the private
case of coloring the image of Figure 2 will be obtained.

Algorithm 1 The parallel implementation of the top-
pling procedure in the Abelian sandpile model.

1: while ∃i ∈ V , such that hi > 4 do
2: for all k ∈ set of sublattices do
3: for all i ∈ k-th sublattice parallel do
4: while hi > 4 do
5: hi ← hi − 4
6: for all j ∈ adj [i] do
7: hj ← hj + 1
8: end for
9: end while
10: end for
11: end for
12: end while

Note that the vertices with the same coloring constitute
a complete coverage. In case of another sandpile model
some other full coverage will be chosen. To create a
software system for toppling parallelization, OpenMP
and CUDA technologies have been chosen.

50 100 150 200

50

100

150

200

Figure 2. 200.000 grains dropped on 200× 200 grid

OpenMP is an API that supports multi-platform shared
memory multiprocessing programming in C, C++, etc.
OpenMP uses a portable, scalable model that gives pro-
grammers a simple and flexible interface for develop-
ing parallel applications for platforms ranging from the
standard desktop computer to the supercomputer.

CUDA is a parallel computing platform and program-
ming model that enables dramatic increases in comput-
ing performance by harnessing the power of the graphics
processing unit (GPU).

k-th sublattice is an array containing all the vertices
with ID k.



3. TEST RESULTS
Let us present the test results. The technology used
CUDA tested on GPU of the model Dell T5500 Work-
station with NVIDIA Tesla C1060.

50 100 150 200 250 300

50

100

150

200

250

300

Figure 3. 450.000 grains dropped on 300× 300 grid

The technology used OpenMP implemented on Szeged
supercomputer with 48 cores. The graph is a depen-
dence of acseleration compared with one core.

5 10 15 20 25 30

5

10

15

20

25

30

Figure 4. 1.000.000 grains dropped on 500× 500 grid

5 10 15 20 25 30

5

10

15

20

25

30

Figure 5. 4.000.000 grains dropped on 1000× 1000 grid

As it is evident from the graphs depending on lattice
sizes the test time is linearly reducing along with the
core increase until the moment when the core increase
does not play any role. Thus, depending on the lattice
size one can choose the best number of cores and get
the best time; moreover, knowing the number of cores
set free one can run several tests simultaneously and
optimize the time.

REFERENCES

[1] D. Dhar. Self-organized critical state of sandpile
automaton models. Phys. Rev. Lett., 64:1613,1990

[2] D. Dhar, 2006 Physica A 369, 29

[3] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev.
Lett. 59, 381 (1987).

[4] P. Grassberger and S.S. Manna, J. Phys. France 51
(1990) 1077-1098

[5] Su.S. Poghosyan, V.S. Poghosyan, V.B. Priezzhev
and P. Ruelle, Phys. Rev. E 84, 066119 (2011)

[6] A. Fey, L. Levine, and D.B. Wilson, Phys. Rev.
Lett. 104, 145703 (2010); Phys. Rev. E 82, 031121
(2010)

[7] V.S. Poghosyan, S.Y. Grigorev, V.B. Priezzhev and
P. Ruelle, 2010 J. Stat. Mech. P07025

[8] V.S. Poghosyan and V.B. Priezzhev, Acta
Polytechnica Vol. 51 No. 1/2011

[9] S.N. Majumdar and D. Dhar, 1991 J. Phys. A:
Math. Gen. 24 L357

[10] S. Frehmel, ACRI, volume 6350 of Lecture Notes
in Computer Science, 35-45. Springer, (2010)


