On Estimation of High Degree Energy for Some Type of Hyperbolic Equations

Hakob, Abajyan

Institute for Informatics and Automation Problems Yerevan, Armenia e-mail: habajyan@ipia.sci.am

ABSTRACT

Under conditions on the coefficients $A_{ii}(t, x_1, ..., x_n)$ for the solution $u(t, x_1, ..., x_n)$ of the first boundary problem for the hyperbolic equations, the paper proves the estimation of high degree energy $E(t_1, v_p) \le CE(t_2, v_p)$, $t_1 \ge t_2$ with a constant C

independent of t, where
$$v_p = \frac{\partial^p u}{\partial t^p}$$
 .

Keywords

High degree energy, hyperbolic equations, estimation, first boundary problem.

1. INTRODUCTION

Let Ω denote the bounded domain in the space R^n with rather flat curve $\partial\Omega$. $Q=[0,\infty) \times \Omega$ — is a cylinder in the space (t, R^n) , with lateral surface $S=[0,\infty)\times\partial\Omega$, $\overline{Q} = [0, \infty) \times \overline{\Omega}$ $\overline{\Omega} = \Omega \cup \partial \Omega$.

 $0 \le t_2 < t_1$, $Q_{t_1t_2} = \{(x, t), \text{ where }$ Let $x \in \Omega$, $t_2 \le t \le t_1$ is a cylinder with basis Ω_t , $\Omega_{t_i} (\Omega_{t_i} = \{(x, t_i), x \in \Omega, j = 1, 2\})$ and lateral surface $\,S_{{\scriptscriptstyle t_1\!t_2}}^{} = [t_2^{},t_1^{}] \times \partial \Omega\,.\,$

Let's consider the function u(t, X), which is a solution of the following problem in Q:

$$\frac{\partial^2 u}{\partial t^2} = Lu \tag{1}$$

$$u = o(x - x) \tag{2}$$

$$\begin{vmatrix} u \mid_{t=0} = \varphi(x_1, ..., x_n) \\ \frac{\partial u}{\partial t} \mid_{t=0} = \psi(x_1, ..., x_n) \\ u \mid_{s} = 0 \end{aligned}$$

$$(2)$$

$$(3)$$

$$(4)$$

where

$$Lu = \sum_{i,i=1}^{n} \frac{\partial}{\partial x_{i}} (A_{ij}(t, x_{1}, ..., x_{n}) \frac{\partial u}{\partial x_{i}})$$

is a symmetric elliptic operator, which means that the coefficients $A_{ii}=A_{ii}$ are functions defined in \overline{Q} with some constants $0<\gamma_1\leq\gamma_2$ and the following inequality takes place:

$$\gamma_{1} \sum_{i=1}^{n} \xi_{i}^{2} \leq \sum_{i,j=1}^{n} A_{ij}(t, x_{1}, ..., x_{n}) \xi_{i} \xi_{j} \leq \gamma_{2} \sum_{i=1}^{n} \xi_{i}^{2},$$

$$\forall (t, x) \in \overline{Q}$$
(5)

We will assume that \mathcal{O}, \mathcal{V} are chosen so that the solution of the problem (1) - (4) is sufficiently smooth.

The following expression is called energy of p-order:

$$E(t, v_p) = \int_{\Omega} \left[\left(\frac{\partial v_p}{\partial t} \right)^2 + \sum_{i=1}^n \left(\frac{\partial v_p}{\partial x_i} \right)^2 \right] d\Omega_t ,$$

where
$$v_p = \frac{\partial^p u}{\partial t^p}$$
, $v_0 = u$, $p = 0,1,...$

and \mathcal{U} is the solution of (1) - (4).

2. THE ESTIMATION OF HIGH DEGREE ENERGY

It is well known (see [1-5]), that if $A_{ij}(t, x_1,...,x_n)$, i, j = 1,...,n do not depend on t, then the following theorem takes place.

Theorem 1: There always exists such a constant $c \ge 1$ so that for all $0 \le t_2 \le t_1$, the following inequality takes place: $E(t_1, v_p) \le cE(t_2, v_p)$, p = 0, 1...

Now we will consider the case where $A_{ij}(t, x_1,...,x_n)$ has the following type:

$$A_{ij}(t, x_1,...,x_n) = B_{ij}(x_1,...,x_n) + \alpha_{ii}(t, x_1,...,x_n).$$

In this case we have proved that the following theorem is true.

Theorem 2: If for some coefficients $c_1 > 0$ and $c_2 > 0$, the following two conditions are being satisfied:

$$\sum_{i,j=1}^{n} \sup_{t} \int_{0}^{t} \max_{x \in \Omega} \left| \frac{\partial A_{ij}}{\partial t} \right| d\tau < c_{1}, \quad p = 0, \quad (6)$$

and

$$\sum_{i,j=1}^{n} \sum_{l=1}^{p} \sup_{t} \int_{0}^{t} (\max_{x \in \Omega} |\frac{\partial^{l} A_{ij}}{\partial t^{l}}| + \max_{x \in \Omega} |\frac{\partial^{l+1} A_{ij}}{\partial t^{l} \partial x_{i}}|) d\tau$$

$$< c_2, p > 0,$$
 (6*)

then there always exists such a constant C>0 so that for all $0 \le t_2 \le t_1$ for the solution of the problem (1) – (4)

$$E(t_1, v_p) \le CE(t_2, v_p), \tag{7}$$
where $v_p = \frac{\partial^p u}{\partial t^p}$.

3. PROPERTIES

3.1. Dependency on the initial conditions

In the set of solutions for the problem (1) - (4) let us define the following function which depends on parameter t:

$$(\mathbf{u},\mathbf{v}) = \int_{\Omega_t} (u_t v_t + \sum_{i=1}^n u_{x_i} v_{x_i}) d\Omega_t$$

It is very easy to show that it meets all the requirements of scalar product on each section Ω_t . For that it's only needed to show that the following conditions are being satisfied on each section Ω_t :

- $(u,u) \ge 0$ and $(u,u) = 0 \iff u \equiv 0$
- $\bullet \qquad (\mathbf{u},\mathbf{v}) = (\mathbf{v},\mathbf{u})$
- $(\alpha u, v) = \alpha (u,v)$
- $(u_1 + u_2, v) = (u_1, v) + (u_2, v)$

In this case, for the solution of equation (1), the norm can be defined as the following value:

$$||u||(t) = \sqrt{(u,u)}$$

Theorem 3: The solution of the first boundary problem for equation (1) is continuously dependent on the initial conditions:

$$\begin{split} \forall \varepsilon > 0 \quad \exists \, \delta = \delta(\varepsilon) \quad \parallel u_1 - u_2 \parallel \mid_{t=0} \, < \, \delta \quad = > \\ \parallel u_1 - u_2 \parallel \mid_t < \, \varepsilon \quad \text{in} \quad \overline{Q} \, . \end{split}$$

Proof:

$$\frac{\partial^2 u_1}{\partial t^2} - \sum_{i=1}^n \frac{\partial}{\partial x_i} (A_{ij}(t, x_1, ..., x_n) \frac{\partial u_1}{\partial x_i}) = 0$$

$$\frac{\partial^2 u_2}{\partial t^2} - \sum_{i,j=1}^n \frac{\partial}{\partial x_i} (A_{ij}(t, x_1, ..., x_n) \frac{\partial u_2}{\partial x_j}) = 0$$

$$u_1|_{t=0} = \varphi_1(x_1,...,x_n)$$

$$u_2|_{t=0} = \varphi_2(x_1,...,x_n)$$

$$\frac{\partial u_1}{\partial t}\big|_{t=0} = \psi_1(x_1, ..., x_n)$$

$$\frac{\partial u_2}{\partial t}\big|_{t=0} = \psi_2(x_1, ..., x_n)$$

$$u_1|_{S_T} = 0$$

$$u_2 \mid_{S_T} = 0$$

Let us denote $U = U_1 - U_2$.

Since

$$\|u\|^2 (t) = E(t,u) \le cE(0,u) = c$$

$$\|\mathbf{u}_{1}-\mathbf{u}_{2}\|^{2}(0) < c\delta^{2}$$
,

hence
$$\|\mathbf{u}_1 - \mathbf{u}_2\|(\mathbf{t}) < \varepsilon$$
.

3.2. Illustrating example

Now we will show that in the Theorem of 2 conditions (6), (6 *) to some extent also are necessary, that is if do not take place (6) and (6 *) energy is not limited. For this purpose we will consider the following example.

$$u_{tt} - (2 + 4t^2)u_{xx} = 0$$
(8)

The first boundary problem for the equation (8) is like the following:

It is required to find such a function $u(t,x)\in C^2(Q_T)\cap C^1(\overline{Q_T})\,,\quad \text{which satisfies the}$ equation (8) in Q_T , where:

$$Q_T = (0,T) \times (0,\pi), \ \overline{Q_T} = [0,T] \times [0,\pi]$$

and the following also takes place:

$$u\mid_{t=0} = \sin x \tag{9}$$

$$\frac{\partial u}{\partial t}\big|_{t=0} = 0 \tag{10}$$

initial and

$$u\mid_{r=0} = u\mid_{r=\pi} = 0 \tag{11}$$

boundary conditions.

In the Theorem 2 we supposed that coefficients A_{ij} have the following form:

$$A_{ij}(t, x_1, ..., x_n) = B_{ij}(x_1, ..., x_n) +$$

$$\alpha_{ij}(t, x_1, ..., x_n)$$
, i.e. $B_{ij}(x_1, ..., x_n) = 2$,

 $\alpha_{ii}(t, x_1, ..., x_n) = 4^{t^2}$ and it is clear that in Teorema2

condition (6) does not take place because

$$\int_{0}^{t} 8\tau \ d\tau = 4t^{2}$$
, i.e. the condition (6) does not take

place.

It is not difficult to notice that $u(t, x) = e^{t^2} \sin x$ is the solution of equation (8).

Let us calculate the energy:

$$E(t,u) = \int_{0}^{\pi} \left[\left(\frac{\partial u}{\partial t} \right)^{2} + \left(\frac{\partial u}{\partial x} \right)^{2} \right] dx = \int_{0}^{\pi} \left[\left(2te^{t^{2}} \sin x \right)^{2} + \left(e^{t^{2}} \cos x \right) \right] dx$$

$$= 4t^{2}e^{2t^{2}} \int_{0}^{\pi} \sin^{2} x dx + e^{2t^{2}} \int_{0}^{\pi} \cos^{2} x dx =$$

$$4t^{2}e^{2t^{2}} \int_{0}^{\pi} \frac{1 - \cos 2x}{2} dx + e^{2t^{2}} \int_{0}^{\pi} \frac{1 + \cos 2x}{2} dx = 2\pi t^{2}e^{2t^{2}}$$

$$+ \frac{\pi}{2}e^{2t^{2}}$$

that means that energy is not limited.

REFERENCES

- [1] O. A. Ladyzhenskaya, "Boundary-value problems of mathematical physics", *Moscow*, *Nauka*, p. 408, 1973 (in Russian).
- [2] E. F. Beckenbach, R. E. Bellman, "Inequalities", *Springer-Verlag*, p. 198, 1965.
- [3] O. A. Ladyzhenskaya, "Linear and Quasilinear Elliptic Equations", *Academic Press*, p. 495, 1968.
- [4] S. L. Sobolev, "Some Applications of Functional Analysis in Mathematical Physics", *American Mathematical Society*, p. 286, 1991.
- [5] H. G. Abajyan, "The Estimation of High Degree Energy for the Decision of the First Boundary Problem for the Hyperbolic Equations", *Vestnik RAU*, no. 2, p. 72-82, 2009.