
The methodology of application development for hybrid

architectures

Alexander Bogdanov

Saint-Petersburg State

Electrotechnical University “LETI”

Saint-Petersburg, Russia

e-mail: bogdanov@csa.ru

Vladimir Orekhov

Saint-Petersburg State

Electrotechnical University “LETI”

Saint-Petersburg, Russia

e-mail:

orekhov.volodya@gmail.com

Vladimir Gaiduchok

Saint-Petersburg State

Electrotechnical University “LETI”

Saint-Petersburg, Russia

e-mail: gvladimiru@gmail.com

ABSTRACT
This paper provides an overview of the main

recommendations and approaches of the methodology of

parallel computation application development for hybrid

structures.

Keywords
Hybrid architectures, parallel computation, methodology

1. INTRODUCTION
Avoiding all the problems during the research and

development is virtually impossible, that is why one of the

main goals of modern application development

methodologies is to detect potential problems as early,

as possible, and to eliminate them.

There are several great methodologies concerning the
application and product development in general [1,2];

however, the application development for hybrid

architectures is a very specific branch and has its own

tricky problems. The following methodology was

developed within the master’s thesis project

“Optimization of complex tasks’ computation on

hybrid distributed computational structures”

accomplished by V. Orekhov. This methodology

both covers the well-known problems of applications based

on parallel computations and describes the process of its

development in details, offering easy ways of avoiding

potential crucial problems.

2. PRELIMINARY ALGORITHM
ANALYSIS AND TASK SIMULATION
Before the actual development of an application based on

parallel computing, developers should go through several

steps, which are illustrated in figure 1.

Figure 1. The scheme of preliminary algorithm analysis and

task simulation

2.1. Execution scheme design

This step includes the design of a general execution

scheme, which will on a high level of abstraction show the

main elements: blocks of code, which will be executed in

parallel, blocks of code, which will be executed in series

and data transfers between the host and computational

devices.

An example of an execution scheme for the K-Means

clustering algorithm is represented in figure 2.

Figure 2. Sample execution scheme for the K-Means

clustering algorithm

The process of the execution plan design is iterative, on

each iteration developers should try to maximize two main

parameters:

 parallelization coefficient;

 amount of stand-alone computations (meaning the

amount of computations, during which the “host –

computational devices” channel is not used to transfer

data).

Although these two parameters seem to mean the same

thing, it is very important to realize the difference between

them.

The parallelization coefficient shows the general amount of

computations, which are executed in parallel:

where – the amount of computations, which are

executed in parallel;

 – the overall amount of computations (both parallel

and serial).

The amount of stand-alone computations, however, is a

more specific parameter, and basically means the amount

of computations, during execution of which the “host –

computational devices” channel is not used to transfer data.

This parameter takes into consideration the data transfer

costs and maximization of this parameter means

maximization of task execution solely on computational

devices.

2.2. Task simulation
This step includes the design of a task on the basis of the

designed execution scheme, which will simulate the

behavior of the target task.

As far as at this step we focus on time complexity, the

actual implementation of the algorithm’s steps is not

important; what is important is to simulate the same

amount of computations via something basic – like simple

arithmetic operations

In this simulated task all the computations should be

replaced with the equivalent amount of simple operations.

That will allow achieving a model with the same

computational difficulty as in the target task, extremely

cutting the development time.

2.3. Executing the simulated task
At this step the simulated task should be executed on the
target computational system. After that it is time to analyze
the execution results. The results can include such base
parameters, as:

 Execution time;

 Execution speed in iterations per second, if the

number of iterations is not constant (as it is for the

clustering algorithms).

These base parameters show the performance of a

particular task, executed on a particular computational

system. At the same time, it appears that knowing simple

fact like “X executes faster, than Y” is not enough – we

need a more detailed comparison of X and Y to organize a

proper analysis, for that purpose derivative parameters can

be used:

 Scaling efficiency

where SE – scaling efficiency,

Spi – execution speed or other base parameter for i

computational devices.

 Coefficient showing the proximity to the ideal scaling

efficiency.

The scaling efficiency chart for the K-Means clustering

algorithm can illustrate the meaning of the scaling

efficiency parameter and is represented in figure 3.

Figure 3. Scaling efficiency analysis

If the results are satisfactory, the execution scheme is

proven to be appropriate and the application should be

developed based on it.

If the results are not satisfactory, either the execution

scheme should be redesigned or the target computational

system should be changed.

Quite frequently it is impossible to execute the simulated

task on the target computational system just because it

doesn’t exist – for example, all parts for the hybrid cluster

are bought but yet not set to work. In that case the

simulated task should be executed on the closest available

computational system (here “closest” corresponds to

system’s structure and size).

3. DETERMENATION OF SCALING

EFFICIENCY
When we speak about effective scaling in terms of hybrid

clusters, one of the main trends is the following one:

Scaling can be efficient up to some critical number of

computational devices, and then it becomes inefficient.

This number is a crucially important constant as it

describes the relations between the specific task (usually an

implementation of some algorithm) and the specific

computational system. However, it can take a lot of efforts

to detect this number and it turns out that in most cases we

don’t need it.

All we need to know is:

 The upper bound for the computational devices

number, which are supposed to be used for this task;

 Whether this number is smaller, than the critical

number, after which we lose scaling efficiency, or not.

It is important to know these things as early, as possible, to

avoid the problems of inefficient scaling.

Let’s assume that the upper bound of scaling is known in

the very beginning of the development process. Then the

goal is to determine whether or not the scaling is effective

for this number of computational devices, for a particular

algorithm’s implementation and on a particular

computational system.

In these terms, if scaling for an exact upper bound of

computational devices is not effective (see Case 2), either

the execution scheme should be redesigned or the target

computational system should be changed, and this approach

absolutely fits the scheme, illustrated in figure 1.

The deeper understanding of scaling efficiency can be

obtained by simulating and testing tasks on the target

systems and building scaling efficiency charts as shown in

figure 3. This chart basically shows how much of the

hardware potential is used, when scaling on more

computational devices. For instance, figure 3 shows nearly

100% scaling efficiency on 2 GPUs and only about 50%

scaling efficiency on 8 GPUs. It is important to understand

the bottom bound of scaling efficiency, after which we

don’t want to continue the scaling process (it might be, for

instance, 20%).

Several real-life cases will help to better understand the

subject:

 Case 1: describes the necessity of knowing the upper

bound of scaling before the beginning of the

development process.

Let’s say the application was simulated, developed

and tested for an upper bound of 20 computational

devices. After a while, the target hybrid cluster grows

wider and gets extra 10 computational devices, so the

application executes on a total of 30 computational

devices. In worst-case scenario, on 30 devices it will

execute slower, than on 20 devices, which is,

obviously, an extremely inefficient use of

computational capabilities.

 Case 2: describes how the scaling efficiency problem

can be detected and eliminated in the early stage.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

S
ca

li
n

g
 e

ff
ic

ie
n

cy

GPU quantity

Ideal scaling

Real scaling for 16 384 clusters

Let’s assume that the upper bound is known to be 40

devices but the results of an iterative execution have

clearly shown, that the task mapped on 16 devices

executes faster, than the task mapped on 32 devices.

That means that this combination of an algorithm’s

implementation and a target computational system are

not able to provide an effective scalability up to 40

devices.

4. OPTIMAL TARGET SYSTEM

CHOICE
An important question during the parallel application

development process is the choice of a target computational

system (meaning hardware platform).

The first thing to think about is whether the application can

be scaled efficiently or not. If it can be scaled efficiently,

the target computational platform should be a hybrid

computational system, containing several computational

devices. Both scientists and developers often set quite

ambitious goals implying efficient scaling on up to

hundreds of computational devices. In this case, poor

scalability is fatal.

At the same time, if the goal is not that ambitious (for

instance, achieving a 40x speedup), it is good to remember

the following trend:

Inefficient scaling doesn’t mean, that the task can’t be

effectively executed in parallel.

If the task can’t be scaled efficiently, it always can be

executed on one computational device. Nowadays

practically every PC is a simplest hybrid system with a

CPU representing host device and GPU representing

computational device and can cope with this task.

When we speak about parallel computations on hybrid

systems, it is very important to choose between AMD

OpenCL and NVidia CUDA technologies, and this choice

affects the target computational system choice heavily.

Here one of the paradigms should be chosen. OpenCL is a

free standard, supported by many hardware developers,

including AMD, Intel and NVidia; the basic idea behind

OpenCL is to create a unified framework for application

development on hybrid structures. OpenCL hides all the

implementation details and represents complex hybrid

systems as a single system with a number of computational

devices.

CUDA is focused on the massively parallel computing

around NVidia GPUs solely; as they choose such a narrow

area, obviously, CUDA shows a better performance on

NVidia GPUs comparing to OpenCL.

If NVidia CUDA is used as the dominant technology, there

are no other options than using a GPU cluster, which

includes numerous NVidia GPUs. If we choose OpenCL,

practically every hybrid system can be a target system.

5. CONCLUSION
The described methodology covers the whole development

process of a parallel application including preliminary

algorithm analysis, task simulation, scalability questions,

dominant technology and target system choice.

The methodology is based on the in-depth researches

of algorithms’ implementation for hybrid

distributed structures, one of the center aspects of which

was scaling efficiency.

All the main principles are covered by real-life examples.

6. ACKNOWLEDGEMENT
Work partially supported by the Russian Foundation for

Basic Research, project no. 13-07-00747-a and

St.Petersburg State University, project no. 9.38.674.2013.

REFERENCES
[1] Martin, R. C. “Agile Software Development, Principles,

Patterns, and Practices”. Prentice all Pearson Education ,

 00 .

[2] Ries, E. “The Lean Startup: ow Today's Entrepreneurs

Use Continuous Innovation to Create Radically Successful

Businesses”. Crown Business, 2011.

http://en.wikipedia.org/wiki/Crown_Publishing

