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ABSTRACT 
This paper provides an overview of the main 

recommendations and approaches of the methodology of 

parallel computation application development for hybrid 

structures. 
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1. INTRODUCTION
Avoiding all the problems during the research and 

development is virtually impossible, that is why one of the 

main goals of modern application development 

methodologies is to detect potential problems as early, 

as possible, and to eliminate them.  

There are several great methodologies concerning the 
application and product development in general [1,2]; 

however, the application development for hybrid 

architectures is a very specific branch and has its own 

tricky problems. The following methodology was 

developed within the master’s thesis project 

“Optimization of complex tasks’ computation on 

hybrid distributed computational structures” 

accomplished by V. Orekhov. This methodology 

both covers the well-known problems of applications based 

on parallel computations and describes the process of its 

development in details, offering easy ways of avoiding 

potential crucial problems.   

2. PRELIMINARY ALGORITHM
ANALYSIS AND TASK SIMULATION 
Before the actual development of an application based on 

parallel computing, developers should go through several 

steps, which are illustrated in figure 1. 

Figure 1. The scheme of preliminary algorithm analysis and 

task simulation 

2.1. Execution scheme design 

This step includes the design of a general execution 

scheme, which will on a high level of abstraction show the 

main elements: blocks of code, which will be executed in 

parallel, blocks of code, which will be executed in series 

and data transfers between the host and computational 

devices. 

An example of an execution scheme for the K-Means 

clustering algorithm is represented in figure 2. 

Figure 2. Sample execution scheme for the K-Means 

clustering algorithm 

The process of the execution plan design is iterative, on 

each iteration developers should try to maximize two main 

parameters: 

 parallelization coefficient;

 amount of stand-alone computations (meaning the

amount of computations, during which the “host –

computational devices” channel is not used to transfer

data).

Although these two parameters seem to mean the same 

thing, it is very important to realize the difference between 

them. 

The parallelization coefficient shows the general amount of 

computations, which are executed in parallel: 

  
         

        
  

where          – the amount of computations, which are

executed in parallel; 

        – the overall amount of computations (both parallel

and serial). 

The amount of stand-alone computations, however, is a 

more specific parameter, and basically means the amount 

of computations, during execution of which the “host – 

computational devices” channel is not used to transfer data. 

This parameter takes into consideration the data transfer 

costs and maximization of this parameter means 

maximization of task execution solely on computational 

devices. 



2.2. Task simulation 
This step includes the design of a task on the basis of the 

designed execution scheme, which will simulate the 

behavior of the target task.  

As far as at this step we focus on time complexity, the 

actual implementation of the algorithm’s steps is not 

important; what is important is to simulate the same 

amount of computations via something basic – like simple 

arithmetic operations 

In this simulated task all the computations should be 

replaced with the equivalent amount of simple operations. 

That will allow achieving a model with the same 

computational difficulty as in the target task, extremely 

cutting the development time. 

2.3. Executing the simulated task 
At this step the simulated task should be executed on the 
target computational system. After that it is time to analyze 
the execution results. The results can include such base 
parameters, as: 

 Execution time;

 Execution speed in iterations per second, if the

number of iterations is not constant (as it is for the

clustering algorithms).

These base parameters show the performance of a 

particular task, executed on a particular computational 

system. At the same time, it appears that knowing simple 

fact like “X executes faster, than Y” is not enough – we 

need a more detailed comparison of X and Y to organize a 

proper analysis, for that purpose derivative parameters can 

be used: 

 Scaling efficiency

        
    
    

  

where SE – scaling efficiency, 

Spi – execution speed or other base parameter for i 

computational devices. 

 Coefficient showing the proximity to the ideal scaling

efficiency.

The scaling efficiency chart for the K-Means clustering 

algorithm can illustrate the meaning of the scaling 

efficiency parameter and is represented in figure 3. 

Figure 3. Scaling efficiency analysis 

If the results are satisfactory, the execution scheme is 

proven to be appropriate and the application should be 

developed based on it. 

If the results are not satisfactory, either the execution 

scheme should be redesigned or the target computational 

system should be changed. 

Quite frequently it is impossible to execute the simulated 

task on the target computational system just because it 

doesn’t exist – for example, all parts for the hybrid cluster 

are bought but yet not set to work. In that case the 

simulated task should be executed on the closest available 

computational system (here “closest” corresponds to 

system’s structure and size).

3. DETERMENATION OF SCALING

EFFICIENCY 
When we speak about effective scaling in terms of hybrid 

clusters, one of the main trends is the following one: 

Scaling can be efficient up to some critical number of 

computational devices, and then it becomes inefficient. 

This number is a crucially important constant as it 

describes the relations between the specific task (usually an 

implementation of some algorithm) and the specific 

computational system. However, it can take a lot of efforts 

to detect this number and it turns out that in most cases we 

don’t need it.  

All we need to know is:  

 The upper bound for the computational devices

number, which are supposed to be used for this task;

 Whether this number is smaller, than the critical

number, after which we lose scaling efficiency, or not.

It is important to know these things as early, as possible, to 

avoid the problems of inefficient scaling. 

Let’s assume that the upper bound of scaling is known in 

the very beginning of the development process. Then the 

goal is to determine whether or not the scaling is effective 

for this number of computational devices, for a particular 

algorithm’s implementation and on a particular 

computational system. 

In these terms, if scaling for an exact upper bound of 

computational devices is not effective (see Case 2), either 

the execution scheme should be redesigned or the target 

computational system should be changed, and this approach 

absolutely fits the scheme, illustrated in figure 1. 

The deeper understanding of scaling efficiency can be 

obtained by simulating and testing tasks on the target 

systems and building scaling efficiency charts as shown in 

figure 3. This chart basically shows how much of the 

hardware potential is used, when scaling on more 

computational devices. For instance, figure 3 shows nearly 

100% scaling efficiency on 2 GPUs and only about 50% 

scaling efficiency on 8 GPUs. It is important to understand 

the bottom bound of scaling efficiency, after which we 

don’t want to continue the scaling process (it might be, for 

instance, 20%). 

Several real-life cases will help to better understand the 

subject: 

 Case 1: describes the necessity of knowing the upper

bound of scaling before the beginning of the

development process.

Let’s say the application was simulated, developed

and tested for an upper bound of 20 computational

devices. After a while, the target hybrid cluster grows

wider and gets extra 10 computational devices, so the

application executes on a total of 30 computational

devices. In worst-case scenario, on 30 devices it will

execute slower, than on 20 devices, which is,

obviously, an extremely inefficient use of

computational capabilities.

 Case 2: describes how the scaling efficiency problem

can be detected and eliminated in the early stage.
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Let’s assume that the upper bound is known to be 40 

devices but the results of an iterative execution have 

clearly shown, that the task mapped on 16 devices 

executes faster, than the task mapped on 32 devices. 

That means that this combination of an algorithm’s 

implementation and a target computational system are 

not able to provide an effective scalability up to 40 

devices. 

4. OPTIMAL TARGET SYSTEM

CHOICE 
An important question during the parallel application 

development process is the choice of a target computational 

system (meaning hardware platform).  

The first thing to think about is whether the application can 

be scaled efficiently or not. If it can be scaled efficiently, 

the target computational platform should be a hybrid 

computational system, containing several computational 

devices. Both scientists and developers often set quite 

ambitious goals implying efficient scaling on up to 

hundreds of computational devices. In this case, poor 

scalability is fatal. 

At the same time, if the goal is not that ambitious (for 

instance, achieving a 40x speedup), it is good to remember 

the following trend: 

Inefficient scaling doesn’t mean, that the task can’t be 

effectively executed in parallel.

If the task can’t be scaled efficiently, it always can be 

executed on one computational device. Nowadays 

practically every PC is a simplest hybrid system with a 

CPU representing host device and GPU representing 

computational device and can cope with this task. 

When we speak about parallel computations on hybrid 

systems, it is very important to choose between AMD 

OpenCL and NVidia CUDA technologies, and this choice 

affects the target computational system choice heavily.  

Here one of the paradigms should be chosen. OpenCL is a 

free standard, supported by many hardware developers, 

including AMD, Intel and NVidia; the basic idea behind 

OpenCL is to create a unified framework for application 

development on hybrid structures. OpenCL hides all the 

implementation details and represents complex hybrid 

systems as a single system with a number of computational 

devices. 

CUDA is focused on the massively parallel computing 

around NVidia GPUs solely; as they choose such a narrow 

area, obviously, CUDA shows a better performance on 

NVidia GPUs comparing to OpenCL. 

If NVidia CUDA is used as the dominant technology, there 

are no other options than using a GPU cluster, which 

includes numerous NVidia GPUs. If we choose OpenCL, 

practically every hybrid system can be a target system. 

5. CONCLUSION
The described methodology covers the whole development 

process of a parallel application including preliminary 

algorithm analysis, task simulation, scalability questions, 

dominant technology and target system choice.  

The methodology is based on the in-depth researches 

of algorithms’ implementation for hybrid 

distributed structures, one of the center aspects of which 

was scaling efficiency.  

All the main principles are covered by real-life examples. 
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