
Virtual Private Supercomputer: Design and Evaluation

I. Gankevich1, V. Gaiduchok1,2, D. Gushchanskiy1, Yu. Tipikin1,
V. Korkhov1, A. Degtyarev1, A. Bogdanov1,2

1Saint-Petersburg State University
2Saint-Petersburg Electrotechnical University "LETI"

Saint-Petersburg, Russia

ABSTRACT
Virtual private supercomputer is an efficient way of conduct-
ing experiments on high-performance computational envi-
ronment and the main role in this approach is played by vir-
tualization and data consolidation. During experiment virtu-
alization is used to abstract application from underlying
hardware and also from operating system offering consistent
API for distributed computations. In between experiments
data consolidation is used to store initial data and results in a
distributed storage system and offers API for distributed data
processing. Combined, these APIs form solid basis of a dis-
tributed system shifting user focus from supercomputing
technologies to problem being solved.

Keywords
Virtual supercomputer, distributed computing, virtualization.

1. INTRODUCTION
Virtual supercomputer can be seen as a collection of ma-
chines working together to compute the problem solution
much like a team of people working together to solve a
problem. Computers like people need some sort of collective
board (or desk) to share results of their work and advance
problem solution one step further. In a distributed
computing environment distributed file systems and
distributed databases act as such a board, storing
intermediate and final results of computation. Apart from a
shared desk people in a team need some sort of
management to solve a problem in time and computers
need a way of combining them into hierarchy helping
efficiently distribute tasks among available computing
nodes. Finally, from a technical point of view, problem
solution should be decoupled from actual execution of tasks
by a virtualization layer as not every problem has efficient
mapping on physical architecture of a distributed system. So,
virtual supercomputer is not only a cluster of machines but
also virtualization and middleware layers on top of it.
There are many ways to construct such a supercomputer and
it is time-consuming to compare and assess benefits of all
technology combinations, however, it is convenient to tailor
technologies to needs of chosen problems and to show ad-
vantages of virtual supercomputer approach in these particu-
lar cases. The chosen problems should be general enough to
make other problems special cases of them, so the two prob-
lems were chosen: one of them being ontology storage, re-
trieval and analysis involving use of a distributed database
and another one being fluid dynamics simulations involving
execution of highly parallel code. Both problems are suitable
for solving in a distributed environment and are discussed in
Section 2. Corresponding virtual supercomputer configura-
tion, its key principles and performance evaluation are dis-
cussed in Section 3. Based on this evaluation conclusions are
made.

2. LARGE-SCALE SUPERCOMPUTER
PROBLEMS
2.1. Ontology storage and retrieval
One way of applying virtual supercomputer is graphs storage
and processing. Transport logistics, articles citation or
social networks are common examples of such tasks. In
some cases graphs may have thousands or millions vertices
and edges, as in Web graph related tasks [1]. That kind of
structures can be handled by various types of algorithms
such as shortest path computations, a special subgraphs
allocation, different vari-eties of clustering, etc. It’s
challenging to efficient process large graphs since some
graph’s properties work poor with high performance
techniques [2]:

 Parallelism based on partitioning of computation
can be difficult to express because the structure of
computations in the algorithm is not known a pri-
ori.

 The irregular structure of graph data makes it diffi-
cult to extract parallelism by partitioning the prob-
lem data. Scalability can be quite limited by unbal-
anced computational loads resulting from poorly
partitioned data.

 Graphs can represent complex irregular relation-
ships between entities, thus, it may provide the
lack of locality for computations and data access
patterns.

 Runtime can be dominated by the wait for memory
fetches because usually graph algorithms are based
on exploring the structure of a graph in preference
to performing large numbers of computations on
the data.

For the sake of effective handling large graphs require par-
ticular storage and processing tools – graph databases such
as Pregel [5] or hypergraph oriented HyperGraphDB
(http://www.hypergraphdb.org) [6]. They permit directly op-
erating with a graph without any intermediate relational data
representations. The tools support replication and distributed
transactions hence make work with a graph size independent.
A special case of graphs is semantic network, which is con-
sidered a widespread method for knowledge representation.
Due to this fact a creation and processing of knowledge
bases and ontologies constructed upon them may be called as
another recourse consuming task [3,4]. Such networks may
not be as big as graphs related to Web graph problems in
terms of numbers of elements, but they often have complex
hierarchical relations between vertices and compound nodes
and edges structure. It complicates methods of their process-
ing because a structure of a graph and graph data are inter-
connected. Knowledge extraction and ontology-based rea-
soning can be called examples of such complex tasks.

Growing interest in ontologies development and processing
produces a demand for tools which are capable of handling
complex operational problems on their own. Such tools have
been created and alredy mentioned: HyperGraphDB is one of
them. HyperGraphDB implements OWL 2.0 standard of on-
tology representation with operating multiple ontologies in
one database as subgraphs. Usage of subgraphs as the base
allows representations of ontologies to use all benefits of dis-
tributive graph database. HyperGraphDB has an integration
with Protege Editor - the most popular ontology editor - and
permits using popular reasoners such as Hermit, Fect++ and
Pellet. Thereby the database hides all the internal work and
allows users to work with familiar tools.

2.3. Fluid dynamics simulations
Another way of applying virtual supercomputer is fluid dy-
namics simulations and this application demands a highly
scalable architecture. In particular, experiments in virtual
testbed can be carried out on single multiprocessor machine
[13] only in the most simple cases involving small
simulation region and time interval, however, large-scale
simulations with multiple atmospheric and ship motion
models involved require use of multiple machines
comprising distributed computing system. Moreover,
hierarchy of mathematical models and high number of
dimensions of these models demand a way of organizing
computations into a single distributed workflow (a pipeline),
for example, WRF, Wavewatch3 and wind wave model. So,
a capability of a virtual supercomputer to dynamically
compose distributed pipelines can accelerate execution of
experiments in a virtual testbed.

3. VIRTUAL SUPERCOMPUTER
SOLUTION

3.1. Principles
Although virtual supercomputer can be implemented in
many ways and using different combinations of technolo-
gies, there are some principles that implementation is consid-
ered to obey. On one hand these principles arise from simi-
larity of different technologies and their implementations, on
the other hand the purpose of some principles is to solve
problems inherent to existing general-purpose distributed
systems. In any case, the principles are useful for solving
large-scale problems on virtual supercomputer and some of
them can be neglected for problems of small sizes.
So, the principles are as follows.

 Virtual supercomputer is completely determined
by its application programming interface (API) and
this API should be platform-independent. The use
of API as the only interface in distributed process-
ing systems is common, but its dependency on op-
erating system or programming language leads to
problems in a long run. For example, the first API
for portable batch systems (PBS) was implemented
in low-level C language and only for UNIX-like
platforms which led to inability or inefficiency of
its usage in other programming languages and in
exposing it as a web service [7]. Moreover, the
API do not cover all the functions of underlying
PBS [7]. So, using platform-independent API is
one of the ways to avoid such integration and con-
nectivity problems. In other words, API is a pro-
gramming language of a virtual supercomputer and
the only way of interacting with it.

 Virtual supercomputer API provides functions to
connect with other virtual supercomputers and
such interaction is seamless. Interaction of differ-
ent distributed systems is the way of solving large-

-scale problems [8] and seamless interaction helps
compose hybrid distributed systems dynamically:
to extend capacity when needed [11]. So it is the
way of scaling virtual supercomputer to solve
problems that are too complex for one virtual
supercomputer.

 Virtual supercomputer processes data stored in a
single distributed database and this processing is
done using virtual shared memory. Efficient data
processing is achieved by distributing data among
available nodes and by running small programs
(queries) on each host where corresponding data
resides; this approach helps not only run query
concurrently on each host but also minimizes data
transfers [5,9]. However, in existing implementa-
tions these programs are not general-purpose: they
are parts of algorithm and they are specific to data
model this algorithm was developed for. For exam-
ple, in MapReduce framework programs represent
map and reduce functions that are run on each row
of table (or line of file) and it is difficult to com-
pose general-purpose program to process any data
within this framework [9]. On the other hand, vir-
tual shared memory interface allows processing of
data located on any host [10] and does it in effi-
cient way. So, distributed database is a way of
storing large data sets and virtual shared memory
is a way of writing general-purpose program to
process it.

To summarize, virtual supercomputer is an API offering
functions to run programs, to work with data stored in a dis-
tributed database and to work with virtual shared memory
and this API is the only programming language of a virtual
supercomputer.

3.2. Evaluation
Implementation of a virtual supercomputer will not be possi-
ble without use of server virtualization technologies: virtual
machine migration provides load-balancing and fault-toler-
ance capabilities – and it is necessary to evaluate their per-
formance relative to physical machines.
We conducted our researches at Resource Center Compute
Center of SPbSU. This center offers interesting approach to
manage resources. Each user is given a virtual machine with
necessary characteristics. Such a machine can be flexibly
customized since user is granted with administrative rights.
When resources of a single virtual machine become insuffi-
cient to meet all user requirements, they can be easily ex-
tended, or even additional VMs can be created in order to
form a virtual cluster. This is how dynamic allocation of
computational resources is carried out.

Figure 1. Performance of clusters with different interconnect
bandwidth based on GROMACS workload.

Alternatively, user can run jobs on dedicated HPC clusters.
In case of our resource center they are T-Platforms cluster
and HP cluster. User home directory is mounted via NFS on
clusters. It provides universal access to computational data:
raw data and results are stored in a single place.
We chose GROMACS as an example of real application
run-ning on clusters. GROMACS is used for efficient
molecular simulations [14]. Figure 1 illustrates the
GROMACS runs (2 different tasks) on T-Platforms
(maximum 376 CPU cores were used) and HP (maximum
192 cores were used) clusters. Picture shows that these
tasks have different scalability on different clusters.
Without going into details, we can say that the root causes
of this behavior is network bandwidth (HP has twice as
much better network), memory size (swapping to disk
substantially increase run time; HP cluster has 96 GB RAM
per node while T-Platforms has only 16 GB) and in-
tensive communication between worker processes.
But what can user do when network communication prevents
scalability? The right way is using multicore SMP machine
with large amount of memory. Computer center has 3 ma-
chines of this type. In a usual case in order to harness such
a machine user has to migrate his applications,
environment and data. In our case virtual machine is
migrated to SMP node. It can be done with ease and it
solves many problems: user does not need to do any actions,
even get accustomed to new environment because his tuned
virtual machine is completely migrated to powerful physical
machine, and all applications, libraries and user settings
remain unchanged. So, virtual machine migration is
another way of extending dy-namic computational resource
pool.

Figure 2. Performance comparison for host and virtual
machine based on GROMACS workload.

Virtualization leads to substantial benefits when using it in a
big computing center [12]. But what about conventional user
PCs? We used such a computer for additional tests. It has 2
Intel Xeon E5410 CPU (total 8 cores), 8 GB RAM, 250 GB
HDD. Such systems become ubiquitous today. Xen technol-
ogy was used for virtualization. We created paravirtualized
guests. Both the host and the guest systems were installed
with Debian 7.0. We were interested in testing such a PC
with practical workloads. We stopped on GROMACS. GRO-
MACS is a package for molecular simulations. The task cho-
sen put heavy load on CPUs. We tried to run this job on the
host system without virtualization and on the guest paravirtu-
alized OS. After series of tests we can say that in our case
(paravirtualized guest using Xen) virtualization led to 5%
time overheads only, so benefits of virtualization can be used
even on conventional PC (Figure 2).

CONCLUSION
It is known that virtualization improves security, resilience
to failures, substantially eases administration due to dynamic
load balancing [12] while doesn’t introduce substantial over-

heads as it was shown. Moreover, proper choice of virtual-
ization package can improve CPU utilization.
The key idea of virtual supercomputer is to harness all avail-
able HPC resources and provide user with convenient access
to them. Such a challenge can be effectively solved only us-
ing contemporary virtualization technologies. They can ma-
terialize the long-term dream of having virtual supercom-
puter at your desk.

ACKNOWLEDGEMENT
The research was carried out using computational resources
of Resource Center Computer Center of Saint-Petersburg
State University (T-EDGE96 HPC-0011828-001) and sup-
ported by Russian Foundation for Basic Research (project N
13-07-00747) and St. Petersburg State University (project N
9.38.674.2013).

REFERENCES
[1] Shi, Shuming, Huibin Zhang, Xiaojie Yuan and Ji-Rong
Wen. "Corpus-based semantic class mining: distributional
vs. pattern-based approaches.", Proceedings of the 23rd In-
ternational Conference on Computational Linguistics, pp.
993-1001, 2010.
[2] Lumsdaine, Andrew, Douglas Gregor, Bruce Hendrick-
son and Jonathan Berry. "Challenges in parallel graph pro-
cessing.", Parallel Processing Letters 17, no. 01, pp 5-20,
2007.

[3] Knight, Kevin and Steve K. Luk. "Building a large-scale
knowledge base for machine translation.", Proceedings of the
National Conference on Artificial Intelligence, pp. 773-773,
1994.
[4] Kumar, Ravi, Prabhakar Raghavan, Sridhar Rajagopalan
and Andrew Tomkins. "Extracting large-scale knowledge
bases from the web." Proceeding of the International Confer-
ence on Very Large Data Bases, pp. 639-650, 1999.
[5] Malewicz, Grzegorz, Matthew H. Austern, Aart JC Bik,
James C. Dehnert, Ilan Horn, Naty Leiser and Grzegorz Cza-
jkowski. "Pregel: a system for large-scale graph processing."
Proceedings of the 2010 ACM SIGMOD International Con-
ference on Management of data, pp. 135-146, 2010.
[6] Iordanov, Borislav. "HyperGraphDB: a generalized graph
database.", Web-Age Information Management, pp. 25-36,
2010.
[7] Troger, Peter, et al. "Standardization of an API for dis-
tributed resource management systems." Cluster Computing
and the Grid, 2007. CCGRID 2007. Seventh IEEE Interna-
tional Symposium on. IEEE, 2007.
[8] Thain, Douglas, Todd Tannenbaum, and Miron Livny.
"Distributed computing in practice: The Condor experience."
Concurrency and Computation: Practice and Experience
17.2 4: 323-356, 2005.‐
[9] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: sim-
plified data processing on large clusters." Communications
of the ACM 51.1: 107-113, 2008.
[10] An, Ping, et al. "STAPL: An adaptive, generic parallel
C++ library." Languages and Compilers for Parallel Com-
puting. Springer Berlin Heidelberg. 193-208, 2003.
[11] Alexander Bogdanov, Michael Dmitriev. Creation of
Hybrid Clouds // Proceedings of 8th International Confer-
ence «Computer Science & Information Technologies» —
Yerevan, Armenia. pp. 235-237, 2011.
[12] A.V. Bogdanov, A.B. Degtyarev, I.G. Gankevich,
V.Yu. Gayduchok, V.I. Zolotarev. Virtual Workspace as a
Basis of Supercomputer Center // Proceedings of the 5th In-
ternational Conference «Distributed Computing and Grid-
-Technologies in Science and Education» — Dubna, Russia.
pp. 60-66, 2012.

[13] Degtyarev A., Gankevich I. Efficiency Comparison of
Wave Surface Generation Using OpenCL, OpenMP and MPI
// Proceedings of 8th International Conference «Computer
Science & Information Technologies» — Yerevan, Armenia,
pp. 248-251, 2011.

