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ABSTRACT
Recent progress in data mining has led to the develop-
ment of numerous efficient and scalable methods for re-
trieval patterns in large biological databases. The ques-
tion is how to bridge these two fields, data min-ing 
and bioinformatics for successful data processing. 
This paper presents the use of core clustering and mod-
ified SVM methods. Results of both methods are com-
pared in gene expression task solving.
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1. INTRODUCTION
A critical problem in biodata analysis is to classify biose-
quences or structures based on their features and func-
tions. The interaction among attributes of biological ob-
ject could be very complicated and very often has graph
representation. The clusterization is one of the popu-
lar tools for understanding the relationships among var-
ious conditions and the features of various objects. Typ-
ical methods include Bayesian classification, neural net-
works, SOM, support vector machines (SVMs), the k near-
est neighbor (KNN), associative classification, etc. In [4] 
a new clustering method was proposed applicable to ei-
ther weighted or unweighted graphs in which each clus-
ter consists of a highly dense core region surrounded 
by a region with lower density. The nodes belonging to 
dense cores of cluster then divided into groups, each of 
which is the representative of one cluster. These groups 
are finally expanded into complete clusters covering all
the nodes of the graph. The support vector machine 
(SVM) has been one of the most popular classification 
tools in bioinformatics [5]. The main idea of SVM is 
that the points of the two classes cannot be separated by a 
hyper-plane in the original space. These points may be 
trans-formed to a higher dimensional space so that 
they can be separated by a hyperplane. In SVM, the 
kernel is in-troduced so that computing the separation 
hyperplane becomes very fast. Saddle point search 
algorithm re-quires finding projections on intersection 
of cube and plane. The goal of our study was to 
compare these two approaches, improving them in some 
modifications, de-scribed below and testing both on 
task of gene expres-sion problem. The paper consists of 3 
sections. In sections 1 and 2 we remind setting of coring 
clusteriza-tion and SVMs problems. In section 3 we 
show  results  of  comparative  computations  on  benchmark 

data, and the section 4 presents the conclusion.

2. PRELIMINARIES
2.1 Coring clusterization
Let us consider an undirected proximity graph

G = (V, E, W),

where V is a set of nodes, E is a set of edges, W is a ma-
trix with entry wij being the weight of the edge between
nodes i and j. In proximity graphs, V represents a set of
data objects, wij ≥ 0 represents the similarity of the ob-
jects i and j. A higher value of wij reflects a higher degree
of similarity. Thus, applying a graph clustering method
proximity graph will produce a set of subgraphs, such
that each subgraph corresponds to a group of similar
objects, which are dissimilar to objects of groups cor-
responding to other subgraphs. We assume that every
cluster of the input graph has a region of high density
called a ’cluster core’, surrounded by sparser regions (non-
core). The nodes in cluster cores are denoted as ’core
nodes’, the set of core nodes as the ’core set’, and the
subgraph consisting of core nodes as the ’core graph’.

For each node i of H ⊆ V, the local density at i is defined
as

d(i, H) :=
∑j∈H wij

|H| . (1)

The node with the minimum local density in H is re-
ferred to as the weakest node of H :

arg mini∈H d(i, H).

We define the minimum density of H as

D(H) = min
i∈H

d(i, H)

to measure the local density of the weakest node of H. 
Let us consider the greedy procedure that iteratively 
com-putes D(G) and removes the weakest nodes from G. 
By ana-lyzing the variation of the minimum density 
value D, we can identify core nodes located in the dense 
cores of clus-ters. That is, if the weakest node is in a 
sparse region, the D value will increase when this node is 
removed. On the other hand, if the removal of the 
weakest node causes a significant drop in D value, then 
this node is highly connected with a set of stronger 
nodes in a high density region. It is potentially a core 
node because its removal greatly reduces the density of 
nodes around it.
Our contribution to this method is to change the 
function in (1) to

d(i, H) =
maxj wij

|H| .



This is correct, because the function’s property of monotony
remains valid.

2.2 SVM
The standard Support Vector Machine (SVM) problem
in learning classification is as follows. We denote by
⟨x1, x2⟩ the inner product of given vectors x1 and x2.
Suppose that we have a learning sample:

{xi, yi}, xi ∈ Rn, yi ∈ {−1, 1}, i = 1, ..., l,

where R is the set of real numbers, l ∈ N and N is the
set of natural numbers.

The standard formulation of SVM problem is:

min
w,b,δi

(
1
2∥w∥2 + C

l
∑

i=1
δi

)
yi (⟨w, x⟩+ b) ≥ 1 − δi

δi ≥ 0, C > 0, i = 1, ..., l.

(2)

The solution w∗, b∗, δ∗ of (2) gives an optimal hyperplane
⟨w∗, x⟩+ b∗ = 0. Our contribution to the SVM method is
that we preliminary calculated a significance of all vari-
ables based on Kullback-Leibler divergence [3].

3. COMPUTING EXPERIMENTS
In order to compare the results of the methods described
above we used the problem of gene expression analysis
[4]. The problem of tissue clustering aims to find connec-
tions between gene expressions and condition of tissues
to predict the condition of a tissue based on its gene ex-
pressions. The database used in the experiment is pub-
licly available at: www.microarray.princeton.edu/onco-
logy/affydata/index.html. This data contains 62 sam-
ples including 40 tumor and 22 normal colon tissues.
Each sample consists of a vector of 2000 gene expres-
sions. We will set aside the sample labels (tumor/normal)
and cluster the samples based on the similarities between
their gene expressions. Ideally, the task was to partition
the sample set into two clusters such that one contains
only tumor tissues and the other contains only normal
tissues.

3.1 Coring clusterization
The proximity graph constructed from the gene expres-
sion vectors is a complete graph of 62 nodes. Because
relative values are more important than absolute values
in gene expressions computing, edge weights are com-
puted based on the Pearson correlation coefficient. Specif-
ically, the weight function is defined by:

wij =
1

2000

2000

∑
k=1

1
sisj

(ik − mi)(jk − mj),

where ik and jk are kth gene expressions of samples i
and j, mi, mj, si, sj are means and standard deviations of
iks and jks. Initially, the coring method identified 12 core
nodes. The dendrogram of these core nodes exposes two
well-separated groups, one contains 10 nodes and the
other has 2 nodes. Expanding these cluster cores yields
two clusters. One has 40 samples consisting of 37 tumor
and 3 normal tissues. The other contains 22 samples con-
sisting of 3 tumor and 19 normal tissues.

Figure 1 shows the comparison of clustering results by
the coring method, and results from [1] and [2]. The re-
sult of [2] consists of 6 clusters, but joining clusters 1, 4
and 5 into one group of normal tissues and 2, 3 and 6
into another group of tumor tissues yields a clustering

similar to the result of [1].

Figure 1: Comparison of the coring method with meth-
ods from [1] and [2]

3.2 SVM method
Suppose parent matrix X = {xij}n,m

i,j=1, n, m ∈ N, where
element xij means availability of jth feature at ith sam-
ple. First, we centralize and normalize this matrix ac-
cording to the following formulas:

aj =
1
n

n

∑
i=1

xij

bj =

√
1
n

n

∑
i=1

(xij − aj)2, j = 1, ..., m

yij =
xij − aj

bj
.

Then received matrix Y = {yij}i
n

,
,
j
m
=1, n, m ∈ N, will 

pos-sess the following properties:

1
n

n

∑
i=1

yij = 0,

1
n

n

∑
i=1

y2
ij = 1,

for every j = 1, ..., m.

Then matrix Y was processed using a standard SVM 
method [5]. On base of training set (32 samples)  ∆-
margin plane was developed. This computing 
experiment resulted the six errors, particularly 2 
samples from the first class, and 4 samples of the 
second class. Therefore the quality of partition can be 
estimated as 93, 75 % on train-ing sample and 86, 67 % 
on testing sample. Applying Kullback-Leibler 
divergence formula, we designed the new matrix with 
weighted variables for which over were used standard 
SVM. But the results we received were different: only 
four errors, 2 errors from the first class and 2 of the 
second. Naturally, the accuracy of partition became 
equal to 93,75 % on training set and 93,33 % on test-ing 
samples.

Figure 2: Comparison of coring method with SVM
standard method and modified procedures



4. CONCLUSION
We tested core clustering method in two variants and
SVM method in standard and modified form. Experi-
ments with coring clusterization demonstrated good clus-
tering results; the method is simple and fast, but defini-
tion the values of two free parameters needs in future
research. Core nodes can represent informative data ob-
jects and also make the method robust to noise.

Standard SVM method gives the same results as coring
clusterization, but after transformation of initial features
space based on Kullback-Leibler divergence, the accu-
racy of partition improved on 7,2%.

Thus, we can conclude that coring clusterization 
gives more possibilities for interpretation, it is more 
robust to noise, but SVM used in transformed space of 
initial vari-ables is more accurate.
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