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ABSTRACT 
Nowadays, technology of the gene expression measurement 
raises new issues related to proper data analytics and 
accurate interpretation of results. Gene expression 
measurements are performed on random populations of cells; 
the physical measurement process is related to hybridization 
and so to the false positive and false negative expression 
components that are stochastic. The measured expression 
value of a condition dependent gene in normal stateܩ௡ 	ൌ
	ܤ	 ൅ 	ܰ, and under the studied condition ܩௗ 	ൌ 	ܤ	 ൅ ܦ ൅ 	ܰ 
may at times coincide due to the fact that a very large set of 
genes are very low expressed. In addition, two different 
conditions can bring two different genes to the same 
expression easily. Statistically, in a population, not only gene 
expressions but also the gene expression profiles (vectors) 
become randomly evaluated. We prove that there is a real 
information limitation to provide the knowledge extraction 
about the state and properties of cells and we refer again to 
[1] that initiates the additional use of the functional pathway 
framework. 
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1. INTRODUCTION
Identification of key genes responsible for tissue/cell 
differentiation and disease development has been under 
intensive research during the recent decades. Nowadays, 
technology of the gene expression measurement has changed 
dramatically from single gene observations to massively 
parallel measurements for whole transcriptome profiles, such 
as microarray or RNA-sequencing experiments [1]. 
However, these approaches have raised new issues related to 
proper data analytics and accurate interpretation of results. 
To date, the main pipeline for gene expression data analysis 
includes identification of differentially expressed genes 
among different spatial or temporal states, followed by 
search of functional gene sets from the obtained gene list that 
can be fittingly interpreted. It is clear that the logic behind 
the mentioned strategy, although implemented in huge 
number of studies, has its shortcomings inherited from the 
nature of gene expression and measurement techniques.  
Expression of the given gene in a cell can be defined as the 
number of mRNA transcripts of that gene present at a given 
time point (at the time of measurement). In fact, the 
expression of each gene in a cell is not constant but is 
represented by a temporal profile of mRNA counts, which 
depends on the rate of mRNA synthesis and degradation. 
These rates depend on complex factors regulating expression 
of the gene based on its essence for cell function. In general, 
gene expression measurements are performed on populations 

of cells. The true expression value of a given gene will thus 
represent a random variable sampled from the pooled 
distribution of cell-specific temporal gene profiles of the 
studied cell population. In reality mRNA transcript count 
cannot be directly quantified (even with RNA sequencing) 
and requires additional steps for sample preparation and 
detection which introduce noise in measurements. Thus, the 
measured gene expression value is a stochastic 
variable, derived from the summed distribution of 
pooled true gene expression profiles and noise 
distribution.

2. PROBABILISTIC MODEL OF GENE
EXPRESSION MEASUREMENTS 
Let’s assume that the measured gene expression in normal 
state (ܩ௡) is a random variable which can be represented as a 
sum of background gene expression in normal state (ܤ) and a 
random variable sampled from noise distribution (ܰ): ܩ௡	 ൌ 	
ܤ 	 ൅ 	 ܰ . If there is a departure from normal state (diseased 
or treatment-associated conditions) the measured gene 
expression is represented as ܩௗ	 ൌ 	 ܤ 	 ൅ ܦ   ൅	 ܰ , where ܦ	
is the distribution of departure values associated with the 
state, and is equal to 0 if the gene expression is not 
dependent on the state and is different from 0 otherwise. 
While attempts have been made to approximate the 
distribution of gene expression under normal conditions as 
well as noise distribution (Table 1), the statistical properties 
of condition specific gene expression remains unclear.   

It can be assumed that the genes associated with any 
particular condition (condition dependent genes) comprise a 
very small proportion of the whole genome. In this case, in 
high-throughput experiments, the expression profiles of 
condition dependent genes across states are not easily 
distinguishable from the large numbers of condition 
independent genes, whose expression profiles, being 
independently distributed, may coincide with condition 
specific ones. On the other hand, measured expression values 
of a single condition dependent gene in normal state 
௡ܩ) 	ൌ 	ܤ	 ൅ 	ܰ) and under the studied condition (ܩௗ 	ൌ
	ܤ	 ൅ ܦ ൅ 	ܰ) may at times coincide due to the fact that the 
distributions of ܩ௡ and ܩௗ may overlap. This may result in 
both false positive (genes that have expression ratio over the 
threshold but are not associated with the studied condition) 
and false negative (disease associated genes that have 
expression ratio lower the threshold) results. The most of 
available gene expression analysis algorithms are not able to 
deal with this problem and simply choose differentially 
expressed genes on the basis of thresholds and cutoffs. This 
may be a reason for unsatisfactory correlation between data 
obtained using different platforms [25]. 



Table 1. Sources and underlying distributions of 
randomization for microarrays experiments. 

Source Distribution

Target 
measure 

mRNA transcript count 
number in cell  (synthesis and 
degradation) + variation of 
mRNA number in cell 
population 

Negative 
binomial or 
Poisson [25] 

Noise 

Isolation + reverse 
transcription 

Poisson 
distribution 
[26] 

PCR amplification 

Poission 
distribution 
[29] 

Unspecific 
hybridization/Hybridization 

Poisson [27] 

Image acquisition 
Lorentzian or 
Gaussian [28] 

3. THE INSTANT POWER OF GENE
EXPRESSION DATA 
3.1. Expression profiles and distribution
Discretization. 
The nature of gene expression data depends on 
measurement techniques employed. Fluorescence 
measurement techniques such as PCR, quantitative PCR 
and microarrays produce continuous data, where as 
Serial measurement of gene expression (SAGE) and 
RNA-sequencing produce discrete count data [31]. 
However, even with continuous is "discretized", 
because the value is rounded to some precision. 
This can be done by a binning procedure like in [2].  
The domain of Expression values. 
Analysis of total mRNA transcript counts per cell showed 
individual cell contains 519,688 to 851,087 mRNAs 8,357 to 
12,739 transcripts, expressed from 8,101 to 11,360 genes. 
The individual transcript levels vary in very broad range from 
0.1 to 20,000 copies per human cell [20].The statistical 
distribution of gene expression values seems to depend on 
measurement techniques. Thus, SAGE measurement of gene 
expression produces a Pareto-like distribution model [4], 
two-color microarray follows Laplasian distribution [30], 
while RNA-seq can be approximated by Negative binomial 
distribution [25]. However, the common characteristic for all 
these distributions is severe skewness towards low-
abundance transcripts. Empirical relative frequency 
distributions of the gene expression levels show the based 
domain of values are 1-100, and in each level there are still 
many genes expressed at that level. The maximum number 
of genes is expressed at very low levels (൑ copy per cell). 
Normal state expression. 
Disease-specific genomic analysis (DSGA) 
employs analytics and comparison of condition specific 
to normal expression to extract data most closely 
associated with the disease. Specifically, DSGA defines a 
supervised step that mathematically transforms and 
simplifies expression data to highlight the pathologic 
component of expression. While retaining expression 
information about every gene, DSGA isolates and 
separates a disease-like and a normal-like portion of 
this expression. [3] exploits a supposition that the set of 
normal gene expressions is to be closed in a linear 
space. With the population increase this space covers 
the whole domain and then some models artificially 
try to optimize the real domain of normal expressions. 
[23], [24] show evidently, that the Logic Separation (LS) 
approach is more suitable for this. Considering two classes 

LS constructs edges (maximal subspaces) that contain 
element of one of these classes and do not contain elements 
of the other class. In binary case this brings us to the 
reduced disjunctive  normal form of Boolean functions. 
Genome information belongs to this case. But gene 
expression data belongs to a multivalued grid so that edges 
constructed above the learning data are sub-grids. Having 
one class of normal expressions it is to construct convex 
closures by one or the set of directions/genes. Ideally it is to 
use the whole gene set but restrictions can help to lower 
computations and it is still to investigate if the information 
loss is acceptable. We use closure by the whole gene set, 
and the notation ܩ௡	 ൌ 	 ܤ 	 ൅  	ܰ, where ܤ is the component 
in closure and ܰ is the noise we mentioned above. 
Expressions of condition dependent genes we divide by ܩௗ	
ൌ 	 ܤ 	 ൅ ܦ   ൅	 ܰ , and then ܤ is the least square fit to the 
convex normal closure, ܰ is the same noise and ܦ represents 
the effective difference that corresponds to its 
condition dependent nature. 
Gene expression profiles. 
Gene expression profile is a column of expression 
data matrix discussed in point Digitization. 
Having the expression values digitized, and working 
under suppositions that: 
• expressions are measured by the random sets of 

cells
• expression data contain a stochastic component that 

is comparable to the expression value of the majority 
of genes (൑ copy per cell)

• in each expression level there are sensitively many 
genes as the whole genome length – the constant 
ratio of it

• conditions and condition dependent groups of genes 
appear independently and concurrently and the 
effective difference of expressions ܦ become random

and applying the Chebyshev's inequality to this model we 
receive that with all sensitive gene profile there is a 
large number of the similar profile that corresponds to 
another condition or is a normal case of expression. 
We do not provide the detailed proof due to space 
limitation. 
High Dimensional low sample size data and 
functional pathways. 
This paper is influenced by [1] which considers the case 
of mathematical analysis of High dimensional low sample 
size type data, which is a common case in genomics. The 
whole framework called GSS-PSF (Growing Support 
Set – Pathway Signal Flow) consists of several parts. The 
core two are the growing support set algorithm that is 
similar to data mining technique, particularly to 
association rule mining technique, and secondly, the 
pathway signal flow model that complements the 
expression data to achieve the required knowledge. In 
GSS-PSF there are several spots of research required to 
complete the study. This paper provides the solution to 
one of them. 

3.2 Solution 
The possible solution for the problem stated above is 
to perform knowledge driven analysis of gene expression 
data. First of all it should be clearly acknowledged that 
mRNA levels at the point of measurement presume only 
probable increase of protein levels (probable, because gene 
expression does not account for efficiency of protein 
translation, posttranslational modifications as well as 
protein functional state and degradation) after some time 
delay. However, if we assume that gene expression 
level is comparable to functional protein levels, we 
can expect increased levels of protein for overexpressed 
genes. And if levels of several genes are increased at 



the time t0, their functional protein levels will be 
simultaneously increased after tdelay. In this case the 
crucial protein-protein interactions become a crucial issue. 
If the levels of one interaction partner are increased but 
the other is not, the signal flow will not be effectively 
amplified. Thus, a functional effect may be expected only 
if the levels of both partners are deregulated. The 
biological pathway is a generalization of protein-protein 
interaction and is a directed and spatially defined sequence 
of bio-molecular physical and regulatory interactions 
that represent information (or signal flow) 
propagations leading to functional realizations of 
biological processes. As such if the pathway with one 
overexpressed protein results in much lower intensity of 
realization of biological process, that pathway with 
whole branch of mildly expressed proteins. 
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