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ABSTRACT
Developments in Robotics and Computer Animation have
shown that the research of Bipedal locomotion is of great
importance and necessity in both fields. The approach pre-
sented in this paper utilizes a human like muscle based con-
trol system and an evolutionary technique to evolve bipedal
walkers. As a result a number of controllers have been
evolved, which are able to control the walker for varied dis-
tances.
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1. INTRODUCTION
Creating human like robots or human like motion has been
a long standing goal in robotics and computer simulation.
The human form gives a much greater degree of utility and
task freedom to robots as well as a much greater sense of be-
lief and immersion for animation, which contain believable
human like characters.

In the bipedal walking research, most researches usually start 
by specifying the reference trajectories for the bipedal robots 
to follow and are obtained by observing the walking patterns 
of humans, which are gathered through case studies or 
analysis of motion capture data[1]. There are a num- ber of 
drawbacks to this approach such as a requirement for strict 
parametrization, which leads to non-stability of that the 
model to different morphological changes in the work space 
such as external forces. A number of techniques have been 
developed to simplify the control design process,but it still 
remains an open topic [2][3].
More recent developments in the field utilize machine learn- 
ing techniques, which allow the controls to be learned for a 
number of different possible domains[4].Most notably bio- 
inspired approaches have arisen, which have shown to 
produce good results. One such approach is the utilization of 
evolutionary methods with neural networks. This approach 
has shown to produce goods results, which produce believ- 
able human like motion invariant to a number of morpho- 
logical changes [5]. This is largely due to specific way these 
methods optimize the network to fit the destination space. 
The method used in this paper starts with a simple ran- dom 
population of networks which are gradually grown in the 
process of the search into more complex networks. This
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leads to deep networks with complex topologies, which are
suitable for inferring complex non-linear models present in
robot motion. Another key aspect of the approach in this
paper is the utilization of a muscle system to control the
model motion.

2. THE SIMULATION

Figure 1: Figure showing the 2D Skeleton
with joints hidden(a) and visible(b).Head Muscle
Joint(1), Left foot Revolution joint(2)

For the sake of simplicity the simulated skeleton was designed 
to run in 2 dimensions, the main principles are believed to 
still apply to a 3D skeleton. This much simplifies the 
simulation, but doesn’t change the essence of the learning 
method. A simplified box contour is used for the bodies in 
order to achieve simpler collision detection, but more 
complicated skeletons are also considered. The masses, sizes 
of body parts as well as imposed limits on the joint angle 
ranges are based on various published human measurements 
[6].

2.1 Skeleton Model
The developed Skeleton has 12 Body Parts, which are con-
nected with 11 Revolution Joints with 2 DoFs(Degree of
Freedom), and 11 specifically developed muscle joints(see
Fig 1). This could be in essence viewed as a number of soft-
springs, which are controlled by a PID control law.

2.2 Muscle joint
The Muscle joint was developed to try and mimic human 
muscle behaviors. The idea behind is that unlike more stan- 
dard joints used in Robotics, where Torques are directly 
applied to Joints in order to achieve specific target posi- 
tions/angles.The Muscle joint flexes or relaxes to achieve 
certain angles. The Muscle joint also adds a softness to the 
joints and as a result the movements of the Skeleton.

The rationale behind using this specific joint comes from ob- 
servations on the subject of how a Human being actually 
perceives Motion. A specific motion is achieved by tensing 
and relaxing Muscles at a specific frequency depending on 
how fast a Human being wants to achieve a certain position 
with a certain body part. It is true that the end effectors are 
Torques which are generated in response to the Muscle ten- 
sion,but when learning to walk or doing something humans
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do not perceive the process as a sequence of torques to be 
applied, but rather by the muscle tension. Neural Evolution 
is a biological bases technique for learning and closely resem- 
bles the evolutionary process of that of a human being, it is 
argued that by working through such a medium as opposed to 
direct Torque manipulation brings about a more Human like 
learning process and as a subset a more human like mo- tion. 
Meaning the neural network learned to carry out the motion 
would work through a medium, which simplifies the input 
and output space.

The structure of the muscles can be seen in Figure 2

2.3 Sensory Data
The Skeleton has an access to various sensory data. Such as 
Body part positions, Center of Masses, Joint angles and 
others. The main parameters that are used as inputs for 
the evolutionary algorithm are flags, which indicate if the 
corresponding foot is in contact with the ground. The flag 
is set to 1 if the specific foot is in contact with the ground 
and -1 otherwise. The sensory data is used as the input 
for the neural network regression model in both the direct 
and indirect sense. The direct sense is the 1 and -1 input 
for the network and in the indirect sense of gathering data 
about the simulation space in order to stop the training or 
simulation or assess the validity of the produced movement.

3. CONTROLLER
The approach used to evolve the neural networks responsible
for controlling the Skeleton is Neuroevoloution by Augment-
ing Topologies(NEAT) [8]. As the results of this technique
a neural network with varying topologies and weighted con-
nections is trained and optimized, which is then used to
control the skeleton. This section briefly describes how the
outputted network is used for control and how it functions
as a brain for the skeleton.

3.1 Neural Networks
As mentioned above a neural network is used as a controller.
The network is a a set of neurons,with each neuron having
a weighted connection to other neurons and an activation
value, which determines the scalar output of the neuron.
The neurons are updated once per time step by summing
incoming transition weights multiplied by the incoming ac-
tivation values and feeding that value into the activation
function f(x),thus determining the activation value for the
next time step. NEAT uses the steepen sigmoid the activa-
tion function:

f(x) =
1

1 + e−ax

Figure 2: The parameter ”a” in the sigmoid func-
tion determines how steep it is. The larger ”a”, the
steeper it is.

As a result of using simple sigmoid neurons the network will 
have a complicated topology of connections to achieve dif- 
ferent outputs depending on the time step. Unlike common 
gradient based loss optimization for neural networks, the 
main goal of NEAT is optimizing the structure of the net- 
work,breeding more complex topologies,which have a strong 
link to the performance of the network in general.

To control the skeleton the neural network is treated as a
black box controller,with 2 inputs and 11 outputs. The 2

inputs are the flags determining if the left and right feet are
touching the ground or not. The 11 inputs values are target
angles which need to be achieved for a walking motion.

4. EVOLUTION
NEAT is used to evolve the network topology and also the
corresponding connection weights.This section contains de-
tails on the method used to evolve walkers.

4.1 Initial population
The algorithm is initialized with a random population of
networks grouped into species based on a K-Means clus-
tering. The initial population is a collection of random
topologies,which ensures topological diversity from the start.
NEAT starts with a minimal population,which then is grad-
ually complexified, this is done in order to get a minimal
solution in the outcome[8].

The initial population corresponds to the population at gen-
eration 0.

4.2 Evaluation
Having initialized and already containing an initial popula-
tion from the previous generation, the algorithm needs to
evaluate the current genome population and assign a fitness
score which will be the indication of its innovation. It will
directly impact the evolution in the future generations. The
Evaluation is done by allowing the individual networks to
control the Skeleton for a specified duration1.

In general the longer the simulation time the longer the 
training takes, but in most cases the better the result.

4.2.1 Fitness function
To measure how successful the current genome was at con- 
trolling the Skeleton some kind of objective function must 
be used.In evolutionary methods that function is referred 
to as the fitness function and it measures the fitness of the 
current genome expressing how successful it was at carrying 
out the objective. A choice of a suitable fitness is a very 
important task and in most cases drastically influences the 
outcome of the evolutionary process. In the case of bipedal 
walking a fitness function is not trivial to choose, and there 
are different suggestions on the subject of which function to 
use. Some suggest using minimal energy use[7], or the simi- 
larity of the achieved motion to the recorded human motion 
capture data, but for the case of pure bipedal locomotion a 
function that biases the search space towards longer,stable 
walks was chosen.

The fitness assigned to a specific genome is calculated by 
the distance in the positive direction the skeleton was able to 
walk under the control of that specific controller. The fitness 
function is expressed by this simple formula:

ffitness = max(max(Lx, Rx), ε)

Figure 3: Where Lx is the x coordinate of the left
foot and Rx for the right foot.ε is a small positive
number(as fitness cannot be negative)

1For most of the conducted experiments the duration was set
to 10000 simulation time steps which amounts to 3 minutes.
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4.2.2 Early Termination Constraints
As not all networks(genomes) are viable for the simulation, 
not only in the sense, that they do not lead to positive in- 
crease in distance traveled, but they might also fall out of 
the range of acceptable angles for the specific joint. This 
means, that as the network outputs are directly mapped to 
the target angles they might not lead to undesired morpho- 
logical changes in the body. To address this issue a num- ber 
of early termination constraints were put in place to discard 
networks that are obviously not leading to positive changes 
in the movement. For most of the experiments three 
constraints were used.

1. If both flags signal that feet aren’t in contact with the
ground,meaning either the skeleton has fallen over and
is on the ground trying to get up, or is trying to take
flight.

2. If both Lx and Rx are negative meaning that no posi-
tive movement is achieved.

3. If one of the target angles is not in the limits imposed
by the Muscle Joint.

Such a method is used to fully utilize the sensory capabilities 
that the simulation and humans have.

4.3 Complexificiation and Mutations
After a genome population has been evaluated and fitness
values have been assigned, the next step is to further com-
plexify the networks in the population and do another eval-
uation round. The complexificiation is achieved by random
mutations applied to the current population.
Neat contains two mutation variations,structural and non-
structural.

• Non-structural mutations are mutations applied to the
weights of the connection between neurons.

• Structural mutations on the other hand directly influ-
ence the network topology.

NEAT has some number of key features,that set it apart from 
most other evolutionary based methods and allow NEAT to 
achieve both greater time based performance and com- plexity 
[8].

5. RESULTS

Figure 4: Walking sequence for the controller cor-
responding to the network in Figure 8

Experimentation has proved that the approach is viable for
evolving networks,which are able to control the walker for
variable distances. The evolved controllers provide surpris-
ingly human like behavior in both achieving a walking pat-
tern and not achieving it.

An example of a successful walking pattern is displayed in 
Figures 7 and 8. Because the walker is biased to walk the 
longest distance possible and a step length was not factored 
in, the walker takes long steps and this leads to a non balance 
state, which in the end leads to the stop of movement or the 
fall of the walker. This is an example of a human like behavior 
in trying to walk as far as possible in a more stable walking 
pattern. Another example of a walker is displayed in Figures 
9 and 10. The walker presented here initially presents a 
human like walking pattern with a small constant step, but 
at some point a non balance point is reached the walker, 
striving to travel a greater distance,starts jumping forward 
to get as far as possible.

Figure 5: Walking sequence for the controller cor-
responding to the network in Figure 9

5.1 Networks

Figure 6: Network evolved after 450 generations of
mutations, with an initial random population of 150
networks

The corresponding evolved network for the walker in Figure 4 
is presented in Figure 6. This network was evolved after a 
fairly large amount of generations, specifically 450 in this 
case. Because more generations have passed the general 
topology of the network is quite complex and has connec- 
tions and cyclic connections for all the inputs and outputs 
with hidden nodes being added in. This leads to the more 
efficient walker in Figure 4, which takes control of all the 
parts of the body and tries to walk as far as possible. In 
contrast the network for the walker in Figure 5 is presented 
in Figure 7.It is evident that this network has a far simpler 
topology and this is because it was evolved in just 2 gener- 
ations. But the network is still able to control the walker, 
this is because the evolutionary technique created connec- 
tion for just one foot and one arm and this leads to the 
walker “dragging” its body forward by creating counter bal- 
ance with the arm and doing a step with just one foot. This 
is a rather interesting observation, that despite the simple 
network evolved it still illustrates how factoring a general 
aim to travel as far as possible into the technique and us- 
ing the specific joint structure which actually allows for the 
“dragging” of the body. This can be viewed as a very human 
like behavior in some cases.

5.2 Population
A strong relation between the initial population of networks 
and the output topology of the networks has been noted. An 
example of this can be seen from Figure 8. This networks had 
an initial population of 466 networks and achieved com- 
plexity comparable to the network in Figure 8 in only 100
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Figure 7: Network evolved after 2 generations of
mutations, with an initial random population of 150
networks

mutation cycles. This can be explained by the fact, that hav- 
ing a higher initial population size there are more networks 
and thus, more species and greater probability of successful 
breeding within the species, which will produce healthy, 
successful offspring.

Figure 8: Network evolved after 100 generations of
mutations, with an initial random population of 466
networks

6. FUTURE WORK
There are a number of techniques, which can be used to 
improve the performance of the evolved controllers.

6.1 Fitness function variation
It has already been discussed in previous sections,but the
usage of more complex fitness functions, which have more
input parameters, such as step order, step length or a better
distance metric may all be used to achieve greater perfor-
mance.

6.2 Evolutionary method choice
Another way is to use an alternative Evolutionary tech- 
nique. One such technique is Novelty Search. Novelty search 
is based on NEAT, but unlike NEAT which uses fitness to 
judge innovation and performance Novelty Search rewards 
Novelty in the evolved networks, and it has been shown that 
for deceptive problems such as Bipedal walking, it might 
lead to far better results than NEAT [9].

6.3 More advanced models
Some work has already been done on a more complex model
for not only walking, but other human like behavior. The
skeleton presented below was developed in order to leverage
a more complete and complex system.

This skeleton was created by scanning a model of a human
skeleton and creating an approximate physical representa-
tion in the simulation. The skeleton also sports the full
array of human muscles used for lateral movement. The
approximate positions of the muscle were taken from exten-
sive kinesiology research. In addition to the more advanced
skeleton,a much more complicated sensory system has been
implemented, which takes into account a vision like system
for the skeleton. Considering this vastly more complex sys-
tem the initial approach is being extended to also include
behaviors, such as standing. Using this behavioral network
in conjunction with the standard walking strategy leads to

Figure 9: An advanced skeleton with center of bal-
ance projection as well as vision system for collision
estimation

interesting results of much more stable walks.The system is
still currently being developed, but it is evident that such a
biological approach is a very interesting research field.

7. CONCLUSION
This work presents a method for creating bipedal walker
controllers using neural evolution and muscle based control.
The method allows to create human like motion in artificial
agents using only the model itself as an input.

Despite the fact that a smooth, fluid bipedal walker was not 
as of yet produced, the work shows that the specific skeletal 
structure and the evolutionary approach have shown to be a 
perspective field for further research as even very simple 
evolved models exhibited human like bipedal motion and at 
the same time involved very little parametrization.
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