
Approximate coverage technique of WSN design

Levon Aslanyan
Institute for Informatics and Automation

Problems of NAS RA
lasl@sci.am

Hakob Aslanyan
Institute for Informatics and Automation

Problems of NAS RA
hakob.aslanyan@gmail.com

ABSTRACT
Paper provides technical means of digitized approximation of
sensing area coverage subsystem in WSN (wireless sensor
networks). Approximate coverage versus to complete cover is
acceptable for some applications and the use of
approximations can extend the network lifetime. The digitized
approximation is considered as an alternative to the analytic,
set cover, Voronoi diagram based and other techniques, that
are in use today. Parameters of accompanying structures
were studied and estimated.

Keywords
WSN, coverage, digitization, quad tree.

1. INTRODUCTION

We consider the algorithmic problem of covering the plain

monitoring areas given in WSN systems. The disk model of

WSN is supposed for a fixed radius ݎ. A target coverage area

 .is considered under the general supposition of convexityܣ

The set of sensor nodes over the domain ܣ may compose a

reachable infrastructure that is able to cover each point ܽ ∈ ܣ

many times. There is a broad literature that considers the exact

coverage framework. Two postulations are typical here: (1)

check for a given set of sensor nodes if in their union they

cover the target area ܣ, and (2) split, because of the

redundancy, the sensor nodes into the groups and check if

each of them provides the exact coverage of the target area ܣ.

In technical level it is important to know the format/structure,

in which the area ܣ is given. In general this can be an analytic

expression; otherwise it can be given by an algorithmic data

structure. Simplest is the polygonal area ܣ given by the set of

corner points. Expressed analytically coverage deals with

specific sets of equations – mostly with linear equations.

The algorithmic data structure formats appear in the

digitized models, when partitions of coverage area into

smaller parts are considered like in triangulations, etc.

A special very important technique of target domain coverage

is related to the Voronoi diagrams. A larger (but restricted)
part of the space containing coverage area ܣ is split into the

domains according to the given set of sensor nodes. Partition

domains correspond to sensors that are situated in those

domains. Such sensors are the first candidates to be considered
as covering. But one sensor, with large sensing radius ݎ, can

cover not only its own domain but also several neighbouring

domains. Then the neighbouring sensors become not necessary

for the coverage at this point. The game (node deletion,
insertion) with domain restructuring is a local and
algorithmically not a complex task. Voronoi diagram
itself is a polynomial complexity algorithmic problem.
The novelty considered in this paper is related to the fact that

several WSN applications are not critical in the sense of an
exact coverage. Approximate coverage works with set
differences that appear around the boarder of the base area ܣ.

As an alternative to the analytic or to data structure models,
the digitized version of the framework is considered, and
simple relations between the model parameters were derived.
The result is a technical framework that may be productive in
WSN design with an approximate coverage subsystem. The
real size implementation still depends on particularities of the
target area ܣ, and the properties of the system, like the

coverage number required (multiplicity), and others.

2. APPROXIMATE COVER BY CIRCLES

Let ݇ denote the required number of covers of elements

ܽ ∈ is a continuous region (as a ܣ by sensors.As the area ܣ

rule), it becomes impossible to check this coverage condition

for all points of ܣ, therefore, we bring the coverage constraint
to a discrete domain, by generating a grid structure over the
sensing area, and then check the coverage condition for the
grid cells (rectangles) only (Figure 1). As a result of such
transformation some of the grid cells become partially covered
(those cells that intersect with the circles of the sensing discs),

Figure 1. Recursive splitting of rectangles

and to guarant a perfect coverage of a given region one

should consider partially covered cells as uncovered (even

if in reality the union of several such discs may cover

these cells) and seek for other sensing discs that cover

these cells entirely. Below we describe a recursive

algorithm for transforming a continuous area into a grid

structure and give an upper bound for partially covered

cells in terms of their surfaces.

First we describe an algorithm that builds a grid structure

over a rectangular area in a presence of a single sensing

disc (Figure 1). This structure is later used for error

approximations (partially covered cells).
Let ܽ be the sensing disc of a sensor node ݏ and ݎ be the

minimal bounding rectangle of ܽ. We build a so-called quad

tree in the following way. We split the root rectangle ݎ into

four equal rectangles (Figure 1), this creates four leaves that
are childe nodes of the root rectangle ݎ. We apply the splitting

procedure recursively to each newly created leaf rectangle

until the new rectangles reach certain size. We are interested

in leaf rectangles that have only one, two or three corner
points inside the disc ܽ. These rectangles approximate the

border of the disc and considered as uncovered while in reality

they are partially covered. Leaf rectangles that have four

corner points inside the disc are completely covered by the

disc and recursive algorithm will not be applied to those

leaves. Rectangles with zero corner points inside the disc form

the outer part of the disc and the recursive algorithm will not

be applied to those rectangles, too.

To check if a corner point p of a given rectangle belongs to the
disc a we simply calculate the distance dሺp, aሻ of p from the
center of ܽ and check if it is not greater than the radius ܴ௦ of

ܽ. i.e. we check the following

ୱ
ଶ൫x୮ െ x ୟ൯

ଶ
 ൫ y ୮ െ y ୟ൯

ଶ
 R

where ሺx୮, y ୮ሻ are the coordinates of p and ሺxୟ, y ୟሻ are the

coordinates of the center of ܽ.
We define a function ݐଵ: Թ ൈ ॰ → ሼ0,1,2,3,4ሽ where Թ is the

space of rectangles, ॰ is the space of discs and ݐଵሺݎ, ܽ ሻ is the

number of corner points of ݎ that are covered by ܽ.

Quad Tree Algorithm (QTA)
//todo: pseudocode

We use a version of the Quad Tree algorithm to check

the coverage constraint. We say a rectangle is covered if there

is a single sensing disc that covers it entirely.

Assume a set of ݈ sensor nodes are deployed in a two-

dimensional plane and we want to check if a rectangular
region ܣ	with sidesܮ௫ and ܮ௬ is covered by the sensing discs

of the given sensor nodes. Without loss of generality we will
assume that ܮ௫ ൌ ܮ ௬ ൌ ܮ (otherwise we could divide ܣ into

square-like regions and check the coverage condition for each

region separately). To answer the coverage question we build

a grid structure over ܣ by applying a quad tree-building

algorithm similar to the one discussed above. The algorithm

starts with a root rectangle ܣ and splits it into four equal

rectangles generating four leaf rectangles. Further the

algorithm is applied recursively to all the leaf rectangles that

intersect with at least one sensing circle (boundary of sensing

disc) and are not contained in any of sensing discs (not

covered). We call this a splitting condition. For checking the

splitting condition for a given rectangle ݎ we first determine
the number ݐଵሺݎ, ܽሻ for all the sensing discs ܽ, ݅ ൌ 1 , … , ݈
and do the following checks:
C1. If ∃݆ ∈ ሼ1, … , ݈ሽ such that ݐ൫ݎ, ܽ൯ ൌ 4 then the rectangle

 .is covered by ܽ and does not satisfy the splitting condition ݎ
C2. Given that the first condition is not satisfied we check if

∃݆ ∈ ሼ1, … , ݈ሽ such that 1 ݐ ൫ ݎ , ܽ ൯ 3 then the rectangle
 intersects/approximates the circle of the sensing disc ܽ and ݎ

satisfies to splitting condition.
The algorithm finishes its work in the following cases:
E1. ∃a leaf rectangle ݎ such that ݐ൫ݎ, ܽ൯ ൌ 0 for ∀݆ ∈ ሼ1,
… , ݈ሽ, i.e. all the corner points of ݎ are out of coverage. In this

case the algorithm finishes its work and returns

uncovered.

E2. There is no leaf rectangle that satisfies the

splitting condition, i.e. all the rectangles are covered. In

this case algorithm finishes its work and returns covered.
E3. The height of the quad-tree becames some predefined

number ݇ (equivalently, all the leaf rectangles satisfying the

splitting condition reached a certain size), i.e. no uncovered

rectangle has been found so far (all the rectangles are

either covered or partially covered). In this case the

algorithm finishes its work and returns almost covered

along with an upper bound of partially covered rectangles

in terms of their surfaces (discussed below).

Extended Quad Tree Algorithm (eqta)

A rectangle can be given by a set of its corner points or by one
corner/center point and the level it has in the quad tree, other
three coordinates can be derived from these as all the

rectangles on the ݉-th level of the quad-tree have sides

ᇞൌ .2/ܮ

//todo: pseudocode extended
The above algorithm can be easily adopted for a ܭ-coverage

case by replacing the conditions 1ܥ and 1ܧ with 1ܥ′ and 1ܧ′,
respectively.

C1'. If ∃݆ଵ, … , ݆ ∈ ሼ1, … , ݈ሽ such that ,ݎ൫ݐ ܽ൯ ൌ 4 for all

݅ ∈ ሼ1,… , is covered by the discs ݎ ሽ then the rectangleܭ
ܽభ,…,಼ܽ and does not satisfy the splitting condition.

D1'. ∃a leaf rectangle ݎ and discsܽభ,…,ܽష಼శభ such that

൯ܽ ,ݎ൫ݐ ൌ 0 for all ݅ ∈ ሼ 1 , … , ݈ െ ܭ 1 ሽ , i.e.
there are ݈ െ ܭ 1 circles that obviously do not
cover endpoints of ݎ, and even if each of the remaining

ܭ െ 1 discs covers ܭݎ‐coverage cannot be guaranteed.

3. TERMS OF MINKOWSKI
GEOMETRY

The well-known Minkowski technique for approximation of
convex bodies [1,§17] complements our algorithmic

constructions and gives a guaranteed approximation

accuracy for partially covered (EQTA-E3) rectangular cells

in terms of their surface. Below we introduce the basic

notations of Minkowski geometry and give the upper

bound for the partially covered cells in the next section.
For an arbitrary convex figure ܨ consider another figure ܩ that

extends ܨ. Particular extensions are of interest:

� ૃ-multipleܩ ൌ is a figure composed after multiplication of ܨߣ

coordinates of vertices of ܨ by a coefficient ߣ, λF ൌ
ሼλx	|	x ∈ Fሽ. This transformation does not depend on the

coordinate system itself and provides a ߣ enlargement of ܨ.
For surfaces ఒܱி and ܱி of ܨߣ and ܨ the following holds

ܱఒி ൌ ߣ ଶܱி. This relation is easy to prove for a polytope but it

is extendable to the general case of convex bodies as well.

� Another important transformation of ܨ is the figure ܩ ൌ ,ఘܨ

which consists of all the points that are not farther than ߩ from ܨ .ܨఘ

composes a convex figure that is called to be parallel to ܨ .ࡲఘ can

change the shape of ܨ. Surfaces of ܨ and

ఘ obey the general relation ܱி ܨ ܱ ிഐ. A more specific relation

between the pair ܱி and ܱிഐ will be reduced below.

Definition 1: For figures A and B the set A ‡ B ൌ
ሼx y 	 | 	 x ∈ A , y ∈ B ሽ is called Minkowski sum of A

and B. Here are some initial properties with Minkowski sum ‡

ܣ � ⊆ ܤ ⇒ A ‡ C ⊆ B ‡ C

� If ܤ ,ܣ are convex, then ܣ ‡ is convex ܤ

� ሺܣ ∪ ሻܤ ‡ ܥ ൌ ሺܣ ‡ ሻܥ ∪ ሺܤ ‡ ሻܥ

More properties relay Minkowski sum with λ-multiple

� αሺA ‡ Bሻ ൌ αA ‡ αܤ,

� ሺα βሻA ⊆ αA ‡ βA, and if ܣ is convex, then

equality holds.

Lemma 1: Let ݏఘ be a sphere of diameter ߩ and ܨ is a convex

figure, then ܨఘ ൌ ܨ ‡ ݏ ఘ.

Proof: From Definition 1 it follows that ܨ ‡ ݏ ఘ contains

points that have a distance at most ߩ from ܨ. On the other hand

for any point ݖ that has a distance ߩ or less from ܨ there is a

point ݔ ∈ ܨ such that ݀ሺݔ ,ݖሻ ߩ and therefore ݖ ∈ ݏ ఘ

‡ ሼ ݔ ሽ ⊆ ܨ ‡ .ఘݏ

Consider a line ܮ on the plane, representing it as ܮ ൌ
ሼݔ ∈ ܴଶ: ܽ௧ ∙ ݔ ൌ ሽ for some nonzero vector ܽ and a realߙ

number ߙ .ߙ ൌ 0 determines the line perpendicular to the

vector ܽ. Then the vector ܽ is called the normal vector of the

line. Each line divides the plain into two sets ܮା ൌ ሼݔ ∈
ܴଶ:	ܽ௧ ∙ ݔ ିܮ ሽ andߙ ൌ ሼݔ ∈ ܴ:	ܽ௧ ∙ ݔ ሽ. Half-planesߙ

 is contained in ܨ If convex figure .ܮ intersect in ିܮ ା andܮ

one of the half-planes ܮା or ିܮ and ܮ ∩ is nonempty, we say ܨ

that ܮ is a supporting line to F. Each boundary point of F
belongs at last to one support line and the figure itself lies on
one side of that line.

Set up the unit vector a outgoing from ሺݔ, ሻ (center ofݕ

coordinates, and an internal vertex of ܨ), that is perpendicular

to the support line ܮ to F (at some point x), and let the

direction cosines of ܽ be ߚ and ߛ. Determine the support
function by Minkowski to the closed convex figure ܨ

݄ሺܽሻ ൌ s u p 	 ሼ ܽ ௧ ∙ ݔ , ݔ ∈ ܨ ሽ .

݄ሺܽሻ ≡ ݄ ሺ ߚ , ߛ ሻ is the distance of support line ܮ
perpendicular to ܽ, to the center of coordinates ሺݔ, ݕ ሻ.

Similarly we consider the boarder function ݎሺܽሻ that is the

distance of intersection of direction ܽ and boundary of ܨ, to
the center of coordinates ሺݔ, ݕ ሻ. To better understand ݄ሺܽሻ

and ݎሺܽሻ it is to consider and analyze them on a disc figure or/

and on a triangle (both convex). If we apply addition or

multiplication on ݎሺܽሻ, then the figure modified can change its

shape. So ܨߣ, for example, can’t be achieved in this way.

The support function allows us to compute the Minkowski

sum of convex sets in a very intuitive way. The Minkowski

sum can be represented by the sum of support functions; λ-

multiple will be represented by ߣ-multiple of a support

function. Moreover, we have an analytical description of

subset relation. The subset relation will be represented by

comparison of support functions. It is not even needed to
handle all	ݔ elements, but only ݔ	ݏ ∋ఘ.

1. ݄ఒ ൌ ,݄ߣ

2. ݄‡ ൌ ݄ ݄,

3. ifܣ ⊆ then ݄ ,ܤ ݄,

4. forܣ and ܤ closed, ܣ ⊆ if and only if ݄ ܤ ݄,

and ܣ ൌ if and only if ݄ ,ܤ ൌ ݄.

Coverage approximation

ூ

௦
ூ

ூ

ூ ூ

Here we discuss the exit E3 of Extended Quad Tree Algorithm

and give an upper bound for a coverage error in terms of
surfaces. Let ܽ௦ be the sensing disc of a node	 s and have a

diameter rୱ, and let the algorithm be interrupted after ݇

recursive rounds, i.e. the smallest rectangles in the resulting
quad tree have sides ᇞൌ 2/ܮ. Denote by ܴ௦ the body composed

of all the recursive rectangles that are contained in ܽ௦. The

coverage error can be estimated in different ways. One of the

possible schemes is as follows. Theoretically the sensing surface
of node ݏ is ܱሺܽ௦ሻ ൌ ߨ ݎ ଶ while the area covered by ݏ given by

Quad Tree Algorithm is ܴ௦, therefore, the coverage error is

ܱሺܽ௦\ܴ௦ሻ and, of course, it hardly depends on ᇞ and the

coordinates and the radius of ݏ. We do not hope to describe the

error in exact terms but we will give an upper bound. Consider a
disc ܽ௦ᇲ centered at the center of ݏ and having a radius rୱᇲ ൌ r ୱ

െ ρ , where ൌ ᇞ √2 ൌ √ 2 ∙ ܮ / 2 is the diameter of the

smallest recursive rectangle (note that all the rectangles
intersecting with the circle of ܽ௦ are of smallest size ᇞൈᇞ). It is

obvious that aୱᇲ ⊂ ܴ ௦ and therefore ܽ௦\ܴ௦ ⊂ ܽ௦\ܽ௦ᇲ and

݁ ൌ ܱሺܽ௦\ܽ௦ᇲሻ ൌ ௦ଶݎߨ െ ௦ᇲݎߨ
ଶ ൌ ௦ଶݎሺߨ െ ௦ଶݎ 2rୱρ െ

ρଶሻ ൏ rୱρߨ2 ൌ
√ଶ⋅గ୰౩

ଶౡషభ
 (*)

is an upper bound for the coverage error of the disc ܽ௦.

The following theorem can be formulated.

Theorem 1

For any ߝ 0 the coverage error of the Quad Tree Algorithm

for a single sensing disc given in an ܮ ൈ area can be ܮ

bounded by ߝ with a ݇ ൌ ቒlog	 ቀ√
ଶ⋅గ୰౩

ఌ
ቁቓ 1 depth quad tree.

Proof
The proof directly follows from (*).

Corollary 1.1

The coverage error of ݈ sensing discs given in anܮ ൈ area ܮ

can be bounded by ߝ with a ݇ ൌ ቜlog	 ቆ√
ଶ⋅గ

ఌ
൫∑ r୧

୪
୧ୀଵ ൯ቇቝ 1

depth quad tree. The proof follows from (*) and the fact that if

ܱሺܽ\ܽᇲሻ is a coverage error of a disc a୧ then the surface of

⋃ ሺܽ\ܽᇲሻ

ୀଵ will be bounded by ∑ ܱሺܽ\ܽᇲሻ

ୀଵ . In case of

uniform sensing radiuses the formula will be ݇ ൌ

ቒlog	 ቀ√
ଶ⋅గ୰

ఌ
ቁቓ 1 ൌ 	 ቒlogሺlሻ log	 ቀ√

ଶ⋅గ୰

ఌ
ቁቓ 1.

Corollary 1.2
For any ߝ 0 the coverage error of the Quad Tree Algorithm

for a single sensing disc can be bounded by ߝ with a ݇ ൌ

ቒlog	 ቀସ√ଶ⋅గ୰౩
య

ఌ
ቁቓ 1 depth quad tree. This is the case when the

initial bounding rectangle is the minimal rectangle (ܮ ൌ (௦ݎ2
that contains the disc ܽ௦.

Theorem 2
The number of recursive calls to the Quad Tree algorithm for

bounding the coverage error of a single sensing disc ܽ௦ by

ߝ 0, given in an ܮ ൈ area, is bounded by ܮ
ଵ

ଷ
ቀ
ସగೞ

ఌ
ቁ
ଶ
.

Proof
From Theorem 1 we have that a quad tree of height ݇ ൌ

ቒlog	 ቀ√
ଶ⋅గ୰౩

ఌ
ቁቓ 1 can bound the coverage error of a single

sensing disc (given in an ܮ ൈ In the worst case a .ߝ area) by ܮ

perfect quad tree of height ݇ should be constructed. These will

lead to a tree of ∑ 4
ୀ nodes and for constructing the ݉-th

level of a tree the QT algorithm should be applied to each

node situated at the ሺ݉ െ 1ሻ-th level of a tree, i.e. the number

of QT - calls is bounded by ܪሺߝ, ܽ௦ሻ ൌ ∑ 4 ൌିଵ
ୀ

ሺ2ଶିଵ െ 2ሻ 3⁄ . By replacing ݇ with log ቀ√
ଶ⋅గ୰౩

ఌ
ቁ 2 and

simplifying the resulting formula we get

,ߝሺܪ ܽ௦, ሻܮ ൏
1
3
൬
ܮ௦ݎߨ4
ߝ

൰
ଶ

Corollary 2.1
For ݈ sensing discs the number of recursive calls is bounded by

1
3
ቌ
ܮߨ4
ߝ

r୧

୪

୧ୀଵ

ቍ

ଶ

follows from Corollary 1.1. In case of uniform sensing
radiuses the bound will be

1
3
൬
ܮݎ݈ߨ4
ߝ

൰
ଶ

Corollary 2.2

For a single sensing disc ܽ௦ given in the minimal bounding

rectangle (ܮ ൌ ௦) the following is trueݎ2

,ߝሺܪ ܽ௦, ௦ሻݎ2 ൏
1
3
ቆ
௦ଶݎߨ8

ߝ
ቇ
ଶ

ൌ
64
ଶߝ3

∙ ሺݎߨ௦ଶሻଶ ൌ
64
ଶߝ3

∙ ሺܱሺܽ௦ሻሻଶ

where ܱሺܽ௦ሻ is the surface of the disc ܽ௦.

From Corollaries 1.1 and 2.1 it follows that the
computational complexity of the Quad Tree algorithm for

bounding a coverage error of ݈ sensing discs by ߝ 0 is the
same as for bounding the error of a single disc with radius

∑ ݎ

ୀଵ .

4. ACKNOWLEDGEMENT

The authors would like to thank FP7 INCO ERA-
WIDE INARMERA-ICT project and its Pilot 2 that
assisted to this research; and the SCS Armenia Thematic
Grant 13-1B340, 2013-2015, which provided partial support
to this research.

REFERENCES

[1] W. Blaschke, Kreis und Kugel, Berlin, 1956.
[2] H. Aslanyan and J. Rolim, Interference minimization in
wireless networks, 3rd International Workshop on Wireless
Network Algorithm and Theory. WiNA2010: 444-449 Hong
Kong, China 2010.
[3] Franz Aurenhammer, Voronoi Diagrams – A Survey of a
Fundamental Geometric Data Structure, ACM Computing
Surveys, 23(3):345–405, 1991.
[4] L.Aslanyan, The isoperimetry problem and other related
problems for the discrete spaces. Problemy Kibernetiki,
Moscow, 36:85-127, 1979, (in Russian).
[5] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill,
“Integrated coverage and connectivity configuration in
wireless sensor networks”, in Proceedings of the 1st
international conference on Embedded networked sensor
systems, ser. SenSys’03. New York, USA: ACM, 2003,
pp.28–39.
[6] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris,
“Span: An energy-efficient coordination algorithm for
topology maintenance in ad hoc wireless networks,” Wireless
Networks, vol. 8, pp. 481–494, 2002, 10.1023/A:
1016542229220.
[7] C.-F. Huang, Y.-C. Tseng, and H.-L. Wu, “Distributed
protocols for ensuring both coverage and connectivity of a
wireless sensor network,” ACM Trans. Sen. Netw., vol. 3,
March 2007.
[8] Z. Zhou, S. Das, and H. Gupta, “Connected K-coverage
problem in sensor networks,” in Proceedings of the 13th
International Conference on Computer Communications and
Networks, ser. ICCCN ’04, Chicago, IL, USA, Oct. 11–13,
2004, pp. 373–378.
[9] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella,
“Energy conservation in wireless sensor networks: A survey,”
Ad Hoc Networks, vol. 7, no. 3, pp. 537 – 568, 2009.

