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ABSTRACT 
Paper provides technical means of digitized approximation of 
sensing area coverage subsystem in WSN (wireless sensor 
networks). Approximate coverage versus to complete cover is 
acceptable for some applications and the use of 
approximations can extend the network lifetime. The digitized 
approximation is considered as an alternative to the analytic, 
set cover, Voronoi diagram based and other techniques, that 
are in use today. Parameters of accompanying structures 
were studied and estimated. 
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1. INTRODUCTION

We consider the algorithmic problem of covering the plain 

monitoring areas given in WSN systems. The disk model of 

WSN is supposed for a fixed radius ݎ. A target coverage area 

 .is considered under the general supposition of convexityܣ

The set of sensor nodes over the domain ܣ may compose a 

reachable infrastructure that is able to cover each point ܽ ∈  ܣ

many times. There is a broad literature that considers the exact 

coverage framework. Two postulations are typical here: (1) 

check for a given set of sensor nodes if in their union they 

cover the target area ܣ, and (2) split, because of the 

redundancy, the sensor nodes into the groups and check if 

each of them provides the exact coverage of the target area ܣ. 

In technical level it is important to know the format/structure, 

in which the area ܣ is given. In general this can be an analytic 

expression; otherwise it can be given by an algorithmic data 

structure. Simplest is the polygonal area ܣ given by the set of 

corner points. Expressed analytically coverage deals with 

specific sets of equations – mostly with linear equations. 

The algorithmic data structure formats appear in the 

digitized models, when partitions of coverage area into 

smaller parts are considered like in triangulations, etc.  

A special very important technique of target domain coverage 

is related to the Voronoi diagrams. A larger (but restricted) 
part of the space containing coverage area ܣ is split into the 

domains according to the given set of sensor nodes. Partition 

domains correspond to sensors that are situated in those 

domains. Such sensors are the first candidates to be considered 
as covering. But one sensor, with large sensing radius ݎ, can 

cover not only its own domain but also several neighbouring 

domains. Then the neighbouring sensors become not necessary 

for the coverage at this point. The game (node deletion, 
insertion) with domain restructuring is a local and 
algorithmically not a complex task. Voronoi diagram 
itself is a polynomial complexity algorithmic problem.  
The novelty considered in this paper is related to the fact that 

several WSN applications are not critical in the sense of an 
exact coverage. Approximate coverage works with set 
differences that appear around the boarder of the base area ܣ. 

As an alternative to the analytic or to data structure models, 
the digitized version of the framework is considered, and 
simple relations between the model parameters were derived. 
The result is a technical framework that may be productive in 
WSN design with an approximate coverage subsystem. The 
real size implementation still depends on particularities of the 
target area ܣ, and the properties of the system, like the 

coverage number required (multiplicity), and others. 

2. APPROXIMATE COVER BY CIRCLES

Let ݇ denote the required number of covers of elements 

ܽ ∈  is a continuous region (as a ܣ by sensors.As the area ܣ

rule), it becomes impossible to check this coverage condition  

for all points of ܣ, therefore, we bring the coverage constraint 
to a discrete domain, by generating a grid structure over the 
sensing area, and then check the coverage condition for the 
grid cells (rectangles) only (Figure 1). As a result of such 
transformation some of the grid cells become partially covered 
(those cells that intersect with the circles of the sensing discs), 

Figure 1. Recursive splitting of rectangles 



and to guarant a perfect coverage of a given region one 

should consider partially covered cells as uncovered (even 

if in reality the union of several such discs may cover 

these cells) and seek for other sensing discs that cover 

these cells entirely. Below we describe a recursive 

algorithm for transforming a continuous area into a grid 

structure and give an upper bound for partially covered 

cells in terms of their surfaces. 

First we describe an algorithm that builds a grid structure 

over a rectangular area in a presence of a single sensing 

disc (Figure 1). This structure is later used for error 

approximations (partially covered cells). 
Let ܽ be the sensing disc of a sensor node ݏ and ݎ be the 

minimal bounding rectangle of ܽ. We build a so-called quad 

tree in the following way.  We split the root rectangle ݎ into 

four equal rectangles (Figure 1), this creates four leaves that 
are childe nodes of the root rectangle ݎ. We apply the splitting 

procedure recursively to each newly created leaf rectangle 

until the new rectangles reach certain size. We are interested 

in leaf rectangles that have only one, two or three corner 
points inside the disc ܽ. These rectangles approximate the 

border of the disc and considered as uncovered while in reality 

they are partially covered. Leaf rectangles that have four 

corner points inside the disc are completely covered by the 

disc and recursive algorithm will not be applied to those 

leaves. Rectangles with zero corner points inside the disc form 

the outer part of the disc and the recursive algorithm will not 

be applied to those rectangles, too. 

To check if a corner point p of a given rectangle belongs to the 
disc a we simply calculate the distance dሺp, aሻ of p from the 
center of ܽ and check if it is not greater than the radius ܴ௦ of 

ܽ. i.e. we check the following 

ୱ
ଶ൫x୮ െ x ୟ൯

ଶ 
 ൫ y ୮ െ y ୟ൯

ଶ 
 R

where ሺx୮, y ୮ሻ are the coordinates of p and ሺxୟ, y ୟሻ are the 

coordinates of the center of ܽ. 
We define a function ݐଵ: Թ ൈ ॰ → ሼ0,1,2,3,4ሽ where Թ is the 

space of rectangles, ॰ is the space of discs and ݐଵሺݎ, ܽ ሻ is the 

number of corner points of ݎ that are covered by ܽ. 

Quad Tree Algorithm (QTA) 
//todo: pseudocode 

We use a version of the Quad Tree algorithm to check 

the coverage constraint. We say a rectangle is covered if there 

is a single sensing disc that covers it entirely. 

Assume a set of ݈ sensor nodes are deployed in a two-

dimensional plane and we want to check if a rectangular 
region ܣ	with sidesܮ௫ and ܮ௬ is covered by the sensing discs 

of the given sensor nodes. Without loss of generality we will 
assume that ܮ௫ ൌ ܮ ௬ ൌ ܮ  (otherwise we could divide ܣ into 

square-like regions and check the coverage condition for each 

region separately). To answer the coverage question we build 

a grid structure over ܣ by applying a quad tree-building 

algorithm similar to the one discussed above. The algorithm 

starts with a root rectangle ܣ and splits it into four equal 

rectangles generating four leaf rectangles. Further the 

algorithm is applied recursively to all the leaf rectangles that 

intersect with at least one sensing circle (boundary of sensing 



disc) and are not contained in any of sensing discs (not 

covered). We call this a splitting condition. For checking the 

splitting condition for a given rectangle ݎ we first determine 
the number ݐଵሺݎ, ܽሻ for all the sensing discs ܽ, ݅  ൌ  1 , … , ݈ 
and do the following checks: 
C1. If ∃݆ ∈ ሼ1, … , ݈ሽ such that ݐ൫ݎ, ܽ൯ ൌ 4  then the rectangle 

 .is covered by ܽ and does not satisfy the splitting condition ݎ
C2. Given that the first condition is not satisfied we check if 

∃݆ ∈ ሼ1, … , ݈ሽ such that 1  ݐ ൫ ݎ , ܽ ൯  3  then the rectangle 
 intersects/approximates the circle of the sensing disc ܽ and ݎ

satisfies to splitting condition. 
The algorithm finishes its work in the following cases: 
E1. ∃a leaf rectangle ݎ such that ݐ൫ݎ, ܽ൯ ൌ  0  for ∀݆ ∈ ሼ1, 
… , ݈ሽ, i.e. all the corner points of ݎ are out of coverage. In this 

case the algorithm finishes its work and returns 

uncovered. 

E2. There is no leaf rectangle that satisfies the 

splitting condition, i.e. all the rectangles are covered. In 

this case algorithm finishes its work and returns covered. 
E3. The height of the quad-tree becames some predefined 

number ݇ (equivalently, all the leaf rectangles satisfying the 

splitting condition reached a certain size), i.e. no uncovered 

rectangle has been found so far (all the rectangles are 

either covered or partially covered). In this case the 

algorithm finishes its work and returns almost covered 

along with an upper bound of partially covered rectangles 

in terms of their surfaces (discussed below). 

Extended Quad Tree Algorithm (eqta) 

A rectangle can be given by a set of its corner points or by one 
corner/center point and the level it has in the quad tree, other 
three coordinates can be derived from these as all the 

rectangles on the ݉-th level of the quad-tree have sides 

ᇞൌ  .2/ܮ

//todo: pseudocode extended 
The above algorithm can be easily adopted for a ܭ-coverage 

case by replacing the conditions 1ܥ and 1ܧ with 1ܥ′ and 1ܧ′, 
respectively. 

C1'. If  ∃݆ଵ, … , ݆ ∈ ሼ1, … , ݈ሽ  such  that  ,ݎ൫ݐ ܽ൯ ൌ 4  for  all 

݅ ∈ ሼ1,… ,  is covered by the discs ݎ ሽ then the rectangleܭ
ܽభ,…,಼ܽ and does not satisfy the splitting condition. 

D1'. ∃a  leaf  rectangle  ݎ  and  discsܽభ,…,ܽష಼శభ   such  that 

൯ܽ ,ݎ൫ݐ ൌ 0   for  all  ݅  ∈  ሼ 1 , … , ݈  െ ܭ     1 ሽ ,  i.e.  
there  are  ݈ െ ܭ  1    circles   that   obviously   do   not  
cover  endpoints of ݎ, and even if each of the remaining 

ܭ െ 1  discs covers ܭݎ‐coverage cannot be guaranteed.  

3. TERMS OF MINKOWSKI
GEOMETRY 

The well-known Minkowski technique for approximation of 
convex bodies [1,§17] complements our algorithmic 



constructions and gives a guaranteed approximation 

accuracy for partially covered (EQTA-E3) rectangular cells 

in terms of their surface. Below we introduce the basic 

notations of Minkowski geometry and give the upper 

bound for the partially covered cells in the next section. 
For an arbitrary convex figure ܨ consider another figure ܩ that 

extends ܨ. Particular extensions are of interest: 

� ૃ-multipleܩ ൌ  is a figure composed after multiplication of ܨߣ

coordinates of vertices of ܨ by a coefficient ߣ, λF ൌ 
ሼλx	|	x ∈ Fሽ. This transformation does not depend on the 

coordinate system itself and provides a ߣ enlargement of ܨ. 
For surfaces ఒܱி and ܱி  of ܨߣ and ܨ the following holds 

ܱఒி ൌ ߣ ଶܱி. This relation is easy to prove for a polytope but it 

is extendable to the general case of convex bodies as well. 

�    Another important transformation of ܨ is the figure ܩ ൌ  ,ఘܨ 

which consists of all the points that are not farther than ߩ from ܨ .ܨఘ 

composes a convex figure that is called to be parallel to ܨ .ࡲఘ can 

change the shape of ܨ. Surfaces of ܨ and 

ఘ obey the general relation ܱி ܨ ܱ ிഐ. A more specific relation 

between the pair ܱி and ܱிഐ will be reduced below. 

Definition 1: For figures A and B the set A ‡ B ൌ  
ሼx   y 	 | 	 x  ∈  A , y  ∈  B ሽ is called Minkowski sum of A 

and B. Here are some initial properties with Minkowski sum ‡ 

ܣ � ⊆ ܤ ⇒ A ‡ C ⊆ B ‡ C 

� If ܤ ,ܣ are convex, then ܣ ‡  is convex ܤ

� ሺܣ ∪ ሻܤ ‡ ܥ ൌ ሺܣ ‡ ሻܥ ∪ ሺܤ ‡  ሻܥ

More properties relay Minkowski sum with λ-multiple 

� αሺA ‡ Bሻ ൌ αA ‡ αܤ, 

� ሺα  βሻA ⊆ αA ‡ βA, and if ܣ is convex, then 

equality holds. 

Lemma 1: Let ݏఘ be a sphere of diameter ߩ and ܨ is a convex 

figure, then ܨఘ ൌ ܨ  ‡ ݏ ఘ. 

Proof: From Definition 1 it follows that ܨ ‡ ݏ ఘ contains 

points that have a distance at most ߩ from ܨ. On the other hand 

for any point ݖ that has a distance ߩ or less from ܨ there is a 

point ݔ ∈ ܨ  such that ݀ሺݔ ,ݖሻ  ߩ and therefore ݖ ∈ ݏ ఘ 

‡ ሼ ݔ ሽ  ⊆ ܨ  ‡  .ఘݏ 

Consider a line ܮ on the plane, representing it as ܮ ൌ
ሼݔ ∈ ܴଶ: ܽ௧ ∙ ݔ ൌ  ሽ for some nonzero vector ܽ and a realߙ

number ߙ .ߙ ൌ 0 determines the line perpendicular to the 

vector ܽ. Then the vector ܽ is called the normal vector of the 

line. Each line divides the plain into two sets ܮା ൌ ሼݔ ∈
ܴଶ:	ܽ௧ ∙ ݔ  ିܮ ሽ andߙ ൌ ሼݔ ∈ ܴ:	ܽ௧ ∙ ݔ   ሽ. Half-planesߙ

 is contained in ܨ If convex figure .ܮ intersect in ିܮ ା andܮ

one of the half-planes ܮା or ିܮ and ܮ ∩  is nonempty, we say ܨ

that ܮ is a supporting line to F. Each boundary point of F 
belongs at last to one support line and the figure itself lies on 
one side of that line. 

Set up the unit vector a outgoing from ሺݔ,  ሻ (center ofݕ

coordinates, and an internal vertex of ܨ), that is perpendicular 

to the support line ܮ to F (at some point x), and let the 

direction cosines of ܽ be ߚ and ߛ. Determine the support 
function by Minkowski to the closed convex figure ܨ 

݄ሺܽሻ ൌ s u p 	 ሼ ܽ ௧ ∙ ݔ , ݔ  ∈ ܨ  ሽ .

݄ሺܽሻ ≡ ݄ ሺ ߚ , ߛ ሻ is the distance of support line ܮ 
perpendicular to ܽ, to the center of coordinates ሺݔ, ݕ ሻ. 

Similarly we consider the boarder function ݎሺܽሻ that is the 

distance of intersection of direction ܽ and boundary of ܨ, to 
the center of coordinates ሺݔ, ݕ ሻ. To better understand ݄ሺܽሻ 

and ݎሺܽሻ it is to consider and analyze them on a disc figure or/

and on a triangle (both convex). If we apply addition or 

multiplication on ݎሺܽሻ, then the figure modified can change its 

shape. So ܨߣ, for example, can’t be achieved in this way.  

The support function allows us to compute the Minkowski 

sum of convex sets in a very intuitive way. The Minkowski 

sum can be represented by the sum of support functions; λ- 

multiple will be represented by ߣ-multiple of a support 

function. Moreover, we have an analytical description of 

subset relation. The subset relation will be represented by 

comparison of support functions. It is not even needed to 
handle all	ݔ elements, but only ݔ	ݏ ∋ఘ. 

1. ݄ఒ ൌ ,݄ߣ

2. ݄‡ ൌ ݄  ݄, 

3. ifܣ ⊆ then ݄ ,ܤ  ݄,

4. forܣ and ܤ closed, ܣ ⊆ if and only if ݄ ܤ  ݄,

and ܣ ൌ if and only if ݄ ,ܤ ൌ ݄. 

Coverage approximation 

ூ

௦
ூ

ூ

ூ ூ

Here we discuss the exit E3 of Extended Quad Tree Algorithm 

and give an upper bound for a coverage error in terms of 
surfaces. Let ܽ௦ be the sensing disc of a node	 s and have a 

diameter rୱ, and let the algorithm be interrupted after ݇ 

recursive rounds, i.e. the smallest rectangles in the resulting 
quad tree have sides ᇞൌ 2/ܮ. Denote by ܴ௦ the body composed 

of all the recursive rectangles that are contained in ܽ௦. The 

coverage error can be estimated in different ways. One of the 

possible schemes is as follows. Theoretically the sensing surface 
of node ݏ is ܱሺܽ௦ሻ ൌ ߨ ݎ ଶ while the area covered by ݏ given by 

Quad Tree Algorithm is ܴ௦, therefore, the coverage error is 

ܱሺܽ௦\ܴ௦ሻ and, of course, it hardly depends on ᇞ and the 

coordinates and the radius of ݏ. We do not hope to describe the 

error in exact terms but we will give an upper bound. Consider a 
disc ܽ௦ᇲ centered at the center of ݏ and having a radius rୱᇲ ൌ r ୱ 

െ ρ , where  ൌ ᇞ √2 ൌ √ 2 ∙ ܮ / 2  is the diameter of the 

smallest recursive rectangle (note that all the rectangles 
intersecting with the circle of ܽ௦ are of smallest size ᇞൈᇞ). It is 

obvious that aୱᇲ ⊂ ܴ ௦ and therefore ܽ௦\ܴ௦ ⊂ ܽ௦\ܽ௦ᇲ and 

݁ ൌ ܱሺܽ௦\ܽ௦ᇲሻ ൌ ௦ଶݎߨ െ ௦ᇲݎߨ
ଶ ൌ ௦ଶݎሺߨ െ ௦ଶݎ  2rୱρ െ

ρଶሻ ൏ rୱρߨ2 ൌ
√ଶ⋅గ୰౩

ଶౡషభ
 (*) 

is an upper bound for the coverage error of the disc ܽ௦. 

The following theorem can be formulated. 



Theorem 1 

For any ߝ  0 the coverage error of the Quad Tree Algorithm 

for a single sensing disc given in an ܮ ൈ  area can be ܮ

bounded by ߝ with a ݇ ൌ ቒlog	 ቀ√
ଶ⋅గ୰౩

ఌ
ቁቓ  1 depth quad tree. 

Proof 
The proof directly follows from (*). 

Corollary 1.1 

The coverage error of ݈ sensing discs given in anܮ ൈ  area ܮ

can be bounded by ߝ with a ݇ ൌ ቜlog	 ቆ√
ଶ⋅గ

ఌ
൫∑ r୧

୪
୧ୀଵ ൯ቇቝ  1

depth quad tree. The proof follows from (*) and the fact that if 

ܱሺܽ\ܽᇲሻ is a coverage error of a disc a୧ then the surface of 

⋃ ሺܽ\ܽᇲሻ

ୀଵ  will be bounded by ∑ ܱሺܽ\ܽᇲሻ


ୀଵ . In case of 

uniform sensing radiuses the formula will be ݇ ൌ

ቒlog	 ቀ√
ଶ⋅గ୰

ఌ
ቁቓ  1 ൌ 	 ቒlogሺlሻ  log	 ቀ√

ଶ⋅గ୰

ఌ
ቁቓ  1. 

Corollary 1.2 
For any ߝ  0 the coverage error of the Quad Tree Algorithm 

for a single sensing disc can be bounded by ߝ with a ݇ ൌ

ቒlog	 ቀସ√ଶ⋅గ୰౩
య

ఌ
ቁቓ  1 depth quad tree. This is the case when the 

initial bounding rectangle is the minimal rectangle (ܮ ൌ  (௦ݎ2
that contains the disc ܽ௦. 

Theorem 2 
The number of recursive calls to the Quad Tree algorithm for 

bounding the coverage error of a single sensing disc ܽ௦ by 

ߝ  0, given in an ܮ ൈ  area, is bounded by ܮ
ଵ

ଷ
ቀ
ସగೞ

ఌ
ቁ
ଶ
.

Proof 
From Theorem 1 we have that a quad tree of height ݇ ൌ

ቒlog	 ቀ√
ଶ⋅గ୰౩

ఌ
ቁቓ  1 can bound the coverage error of a single 

sensing disc (given in an ܮ ൈ  In the worst case a .ߝ area) by ܮ

perfect quad tree of height ݇ should be constructed. These will 

lead to a tree of ∑ 4
ୀ  nodes and for constructing the ݉-th 

level of a tree the QT algorithm should be applied to each 

node situated at the ሺ݉ െ 1ሻ-th level of a tree, i.e. the number 

of QT - calls is bounded by ܪሺߝ, ܽ௦ሻ ൌ ∑ 4 ൌିଵ
ୀ

ሺ2ଶିଵ െ 2ሻ 3⁄ . By replacing ݇ with log ቀ√
ଶ⋅గ୰౩

ఌ
ቁ  2 and 

simplifying the resulting formula we get 

,ߝሺܪ ܽ௦, ሻܮ ൏
1
3
൬
ܮ௦ݎߨ4
ߝ

൰
ଶ

Corollary 2.1 
For ݈ sensing discs the number of recursive calls is bounded by 

1
3
ቌ
ܮߨ4
ߝ

r୧

୪

୧ୀଵ

ቍ

ଶ

follows from Corollary 1.1. In case of uniform sensing 
radiuses the bound will be 

1
3
൬
ܮݎ݈ߨ4
ߝ

൰
ଶ

Corollary 2.2 

For a single sensing disc ܽ௦ given in the minimal bounding 

rectangle (ܮ ൌ  ௦) the following is trueݎ2

,ߝሺܪ ܽ௦, ௦ሻݎ2 ൏
1
3
ቆ
௦ଶݎߨ8

ߝ
ቇ
ଶ

ൌ
64
ଶߝ3

∙ ሺݎߨ௦ଶሻଶ ൌ
64
ଶߝ3

∙ ሺܱሺܽ௦ሻሻଶ

where ܱሺܽ௦ሻ is the surface of the disc ܽ௦. 

From Corollaries 1.1 and 2.1 it follows that the 
computational complexity of the Quad Tree algorithm for 

bounding a coverage error of ݈ sensing discs by ߝ  0  is the 
same as for bounding the error of a single disc with radius 

∑ ݎ

ୀଵ . 
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