
Primitive Recursion on Higher Types ∗

Stanislaw Ambroszkiewicz
Institute of Computer Science, Polish Academy of

Sciences al. Jana Kazimierza 5,
PL-01-248 Warsaw, Poland

e-mail: sambrosz@ipipan.waw.pl,
www.ipipan.waw.pl/mas/stan/

ABSTRACT
A revision of the basic concepts of type, function (called
here operation), and relation is proposed. A simple
generic method is presented for constructing operations
and types as concrete finite structures parameterized by
natural numbers. The method gives rise to build induc-
tively so called Universe intended to contain all what
can be effectively constructed. For any (higher order)
type A the operation of type
RecA : (N ; (N → (A → A))) → (A → A) is constructed
that corresponds to primitive recursion of Grzegorzyk
[8] and Girard [4].

Keywords
Higher order types, primitive recursion

1. INTRODUCTION
It is a continuation of the work of Professor Andrzej
Grzegorczyk [8] (who was inspired by the System T of
Kurt Gödel [5]) concerning recursive objects of all finite
types.

The phrase effectively constructed objects may be seen
as a generalization of the notion of recursive objects.
Objects can be represented as finite (usually parame-
terized) structures. Universe is understood here as a
collection of all generic constructible objects.

In the Universe, constructability is understood literally,
i.e., it is not definability, like general recursive func-
tions (according to Gödel-Herbrand) that are defined by
equations in Peano Arithmetic along with proofs that
the functions are global, that is, defined for all their ar-
guments. Objects are not regarded as terms in lambda
calculus or in combinatory logic.

Most theories formalizing the notion of effective con-
structability (earlier it was computability) are based on
the lambda abstraction introduced by Alonzo Church
that in principle was to capture the notion of function

∗The work was supported by the grants:
RobREx - Autonomia dla robotów ratowniczo-
eksploracyjnych. Grant NCBR Nr PBS1/A3/8/2012
w ramach Programu Badań Stosowanych w Obszarze
Technologie informacyjne, elektronika, automatyka i

robotyka, w Ścieżce A.
oraz IT SOA - Nowe technologie informacyjne dla elek-
tronicznej gospodarki i Spo leczeństwa informacyjnego
oparte na paradygmacie SOA; Program Operacyjny
Innowacyjna Gospodarka: Dzia lanie 1.3.1..

and computation. Having a term with a free variable, it
is easy to make it a function by applying lambda opera-
tor. Unlimited application of lambda abstraction results
in contradiction (is meaningless), i.e., some terms can-
not be reduced to the normal form. This very reduction
is regarded as computation. Introduction of types and
restricting lambda abstraction only to typed variables
results in a very simple type theory.

Inspired by System T, Jean-Yves Girard created sys-
tem F [4], [3]; independently also by John C. Reynolds
[14]. Since System F uses lambda and Lambda abstrac-
tion (variables run over types as objects), the terms are
not explicit constructions. System F is very smart in
its form, however, it is still a formal theory with term
reduction as computation; it has strong normalization
property.

Per Martin-Löf Type Theory (ML TT for short) [13] was
intended to be an alternative foundation of Mathemat-
ics based on constructivism asserting that to construct
a mathematical object is the same as to prove that it
exists. This is very close to the Curry-Howard corre-
spondence propositions as types. In ML TT, there are
types for equality, and a cumulative hierarchy of uni-
verses. However, ML TT is a formal theory, and it uses
lambda abstraction. Searching for a grounding (con-
crete semantics) for ML TT by the Author long time
ago, was the primary inspiration for the Universe pre-
sented in this work.

ML TT, and System F are based on lambda and Lambda
abstraction, so that in their syntactic form they corre-
spond to the term rewriting systems.

In this work lambda and Lambda abstractions are chal-
lenged. It is an attempt to show that the same (as
in System F), and perhaps more, can be achieved by
explicit and concrete constructions, even though these
constructions are not so concise and smart as the cor-
responding terms in System T. The proposed method
relates rather to the approach where explicit construc-
tors are used. In this sense, it continues the idea of
Grzegorczyk’s combinators [8], and in some sense also
combinators in Haskell B. Curry [2] combinatory logic.

Effective construction of an object cannot use actual
infinity. If it is an inductive construction, then the in-
duction parameter must be shown explicitly in the con-
struction. For any fixed value of the parameter the con-
struction must be a finite structure. The Universe pre-
sented in this paper is supposed to consist only of such
objects. Objects are not identified with terms whereas
computations are not term rewritings. Although, in



computations all can be reduced to the primitive types,
higher order types and their objects correspond in pro-
gramming to sophisticated data structures and their in-
stances.

The proposed Universe is not yet another formal the-
ory of types. It is intended to be a grounding for some
formal theories as well as a generic method for con-
structing objects corresponding to data structures in
programming.

Universe is strongly related to computable function-
als (Stephen C. Kleene [9][10][11], Georg Kreisler [12],
Grzegorczyk [6] and [7], as well as to Richard Platek &
Dana Scott PCF++ [15, 16]).

2. FOUNDATIONS

Figure 1: On the left, graphical schema of op-
eration; on the right, composition of two opera-
tions.

This section and the next one may be seen as naive be-
cause there are no technicalities here. However, the aim
is to present the most primitive notions as simple as
possible. These notions (as basic elements for construc-
tions) are types, objects, and operations that process
input objects into output objects. Operation is a syn-
onym for function.

Object a of type A is denoted by a : A. The type of
operation is determined by the type of its input (say
A) and the type of its output (say B), is denoted by
A → B.

Primitive type may be interpreted as data link (com-
munications channel) whereas object of that type as a
signal transmitted in this channel. The interpretation
may be extended for complex types.

Simple operation has one input and one output, how-
ever, in general, operation may have multiple inputs as
well as multiple outputs, see Fig. 1. The type of oper-
ation g having multiple inputs and multiple outputs is
denoted by g : (A1;A2; ...;Ak) → (B1;B2; ...;Bl)

Operation f : A → B may be applied to its argument,
i.e., input object a : A. The output of this application
is denoted by f(a). For operations with multiple input,
application may be partial, i.e., only for some of the
inputs (say ai and aj). Then it is denoted by g(aj ; ai; ∗).
Application is amorphous, however, if the type of the
operation and the types of arguments are fixed, then
application may be considered as an operation.

There are no variables in our approach. In lambda cal-
culus variables serve to denote inputs. In combinatory
logic any combinator has exactly one input. Operation

having many inputs can be (equivalently in some sense)
transformed (by currying) into operation having one in-
put. It will turn out in Section ?? that currying is an
operation.

Composition of two operations consists in joining an
output of one operation to an input of another opera-
tion. The type of the output and the type of the input
must be the same, see Fig. 1. Composition is amor-
phous, however, if the operation types are fixed, then
composition may be considered as an operation.

The Universe will be developed inductively (actually, by
transfinite induction) starting with primitive construc-
tors, destructors and primitive types. At each inductive
level, new primitives will be added. The primitives are
natural consequences of the constructions methods from
the previous levels and give rise to new methods. Each
level is potentially infinite. The Universe is never ending
story. Once construction methods are completed for one
level, it gives rise to the construction of the next level
and new methods. There are always next levels that
contribute essential and qualitatively new constructions
to the Universe.

This constitutes a bit intuitive and informal foundation
for the Universe. In the next sections the idea is devel-
oped fully and precisely.

3. LEVEL ZERO
Level 0 of the Universe consists of primitive constructors
of types, primitive types, and related primitive opera-
tions. On the level 1, the types forming level 0 will be
treated as objects, analogously for higher levels. The
levels of the Universe correspond to an infinite well-
founded typing hierarchy of sorts in CoIC [1].

3.1 Type constructors
Keeping in mind the interpretation of types as telecom-
munication links, there are three basic type construc-
tors. Let A and B denote types.

• × product of two types A×B; as one double link
consisting of A and B. Signals (objects) are trans-
mitted in A×B simultaneously.

• + disjoin union A + B; two links are joined into
one single link. Signal (object) transmitted in this
link is preceded by a label indicating the type of
this object.

• → arrow, operations type A → B; A is input type,
whereas B is output type.

These three basic constructors are independent of prim-
itive types. On the level 1 these constructors will be
considered as operations on types, and new type con-
structors will be introduced.

Product and disjoint union are natural and their nest-
ing, like (A×B) + (C ×D), has obvious interpretation.
The meaning of operation type is a bit more harder to
grasp, especially if input is again an operation type, like
(A → B) → C. The problem is how to interpret opera-
tion as an object. Actually this problem can be reduced
to grasping properly what input types and output types



are in an operation. Fig. 2 may help. Input is inter-
preted as socket board where each socket corresponds
to a link that is a single type. The same for the output.

Type of operation is again a socket board consisting of
two parts. The upper part is a socket board as the input
type. The bottom part is a socket board as the output
type, see Fig. 3. Putting an object a : A into a socket

Figure 2: Another pictorial presentation of oper-
ations: on the left, there is operation with input
socket board consisting of A×B and one output
board consisting of type C; on the right, output
socket board consists of two independent types
B and C.

Figure 3: Operations and their types: opera-
tions are presented in the bottom row whereas
their types in the top row.

Figure 4. An operation applied to objects.

of type A is interpreted as a transmission of the object
via this socket. For an operation f : A → C putting an
object a : A into the input socket of type A means the
application f(a). So that the object f(a) will appear at
the output socket of type B.

For operation f : (B;A) → C the application f(b, a) : C
is just an object at the output socket C, see Fig. 4.
However, f(b, ∗) is still an operation of type A → C.

Once this is clear, it is also easy to grasp what it means
to apply operation F : (A → B) → C to an input object
h : A → B. The input socket board of the operation F is

of type A → B. Putting object h into the input socket
board of F means connecting all the sockets of input
and output of h to the input board of the operation
F , see Fig. 5, where input socket of h (of type A) is
connected to the input socket (of type A) of the input
board of F , whereas output socket of h (of type B) is
connected to the output socket (of type B) of the input
board of operation F . Once it is done, the result of the
application F (h) is at the socket C of the output board
of the operation F .

Figure 5: Application of operation F : (A → B) →
C to object h : A → B.

This is the crucial point of our approach. Types are
interpreted as sockets whereas input types and output
types as socket boards. Operation type is interpreted as
a complex board consisting of input board and output
board. This gives rise to interpret types as objects at
the level 1 of the Universe.

Constructors of objects corresponding to product, dis-
join union, and arrow (operation type) are as follows.
Let a : A and b : B.

• for product: joinA,B is an operations of type
(A;B) → (A × B) such that joinA,B(a; b) is an
object of type A×B denoted as a pair by (a, b).

• for disjoin union: plusAA,B : A → (A + B) and

plusBA,B : B → (A + B). For a : A and b : B,

plusAA,B(a) and plusBA,B(b) are objects of type A+
B.

• for arrow: for any a : A there is the constant
operation of type B → A, such that for any b :
B, it returns a as its output. More generally,
constA,B : A → (B → A), such that operation
constA,B(a) : B → A returns always a as its out-
put.

It is important that the equality symbol ”=” in not used
even for description.

Destructors for product, disjoin union, and arrow.

• projA,B : (A×B) → (A;B). For any (a, b) of type
A× B, projection returns two output objects de-
noted by projAA,B((a, b)) : A and projBA,B((a, b)) :



B. Composition of joinA,B and (projAA,B ; projBA,B)
gives two identity operations: idA : A → A and
idB : B → B, that return the input object as the
output. Although identity operation (say for type
A) may be identified with a link of type A, it is
useful in constructions.

• getA,B : (A + B) → (A;B). For an input object
of type A + B, it returns only one output: either
getAA,B or getBA,B . Although this operation has two
outputs, once it is applied, only one output has
object; it is determined by the input object.

• applyA→B,A. Application as operation indexed by
types A i B is of type ((A → B);A) → B. For any
input objects f : A → B and a : A, it returns as
the output applyA→B,A(f ; a), i.e., the same as the
amorphous application f(a) (being also a destruc-
tor for arrow type). Applications as operations
are used in constructions.

Operation applyA→B,A : ((A → B);A) → B is inter-
preted as a specific board consisting of linked sockets,
see Fig. 6. Generally, operation apply may be more

Figure 6: Applications as operations: simple
applyA→B,A : ((A → B);A) → B, and complex
apply(((C;A)→B),C)

complex, i.e., may have multiple inputs for example, it
maybe of type (((C;A) → B), C) → (A → B), see Fig.
6.

4. PRELIMINARY CONCLUSION
Since there is no more space here to present the com-
plete work, to continue the reading please go to the pa-
per Types and operations http://arxiv.org/abs/1501.03043.

REFERENCES
[1] T. Coquand. Coq proof assistant. chapter 4

calculus of inductive constructions. www
http://coq.inria.fr/doc/Reference-
Manual006.html, 2014. Site on
www.

[2] Haskell B. Curry and Robert Feys. Combinatory
Logic, volume 1. Amsterdam: North Holland,
1958.

[3] Jean-Yves Girard, Yves Lafont, and Paul Taylor.
Proofs and Types, volume 7. Cambridge
University Press (Cambridge Tracts in Theoretical
Computer Science), 1990.

[4] J.Y. Girard. Une extension de l’interpretation de
godel a l’analyse, et son application a l’elimination
des coupures dans l’analyse et dans la theorie des
types. In J. E. Fenstad, editor, Proceedings of the
Second Scandinavian Logic Symposium 1971.

[5] K. Gödel. Über eine bisher noch nicht benützte
erweiterung des finiten standpunktes. Dialectica,
10:280 – 287, 1958.

[6] A. Grzegorczyk. Computable functionals.
Fundamenta Mathematicae, 42:168–202, 1955.

[7] A. Grzegorczyk. On the definition of computable
functionals. Fundamenta Mathematicae,
42:232–239, 1955.

[8] A. Grzegorczyk. Recursive objects in all finite
types. Fundamenta Mathematicae, 54:73–93, 1964.

[9] S. C. Kleene. Countable functionals.
Constructivity in Mathematics: Proceedings of the
colloquium held at Amsterdam, pages 81–100,
1959.

[10] S. C. Kleene. Recursive functionals and
quantifiers of finite types i. Transactions of the
American Mathematical Society, 91:1–52, 1959.

[11] S. C. Kleene. Recursive functionals and quantifiers
of finite types ii. Transactions of the American
Mathematical Society, 108:106–142, 1963.

[12] G. Kreisel. Interpretation of analysis by means of
functionals of finite type,. Constructivity in
Mathematics: Proceedings of the colloquium held
at Amsterdam, pages 101–128, 1959.

[13] P. Martin-Löf. An intuitionistic theory of types:
predicative part. In H. E. Rose and J. C.
Shepherdson, editors, Logic Colloqium 1973.

[14] J. Reynolds. Towards a theory of type structure.
In Colloque sur la Programmation 1974, pages
408–425. Paris, France, 1974.

[15] D. S. Scott. A theory of computable functions of
higher type. University of Oxford, 1969.

[16] D. S. Scott. A type-theoretical alternative to
ISWIM, CUCH, OWHY. Theoretical Computer
Science, 121:411–440, 1993.


