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ABSTRACT
The trivial exponential upper bounds and only Ω(n2)
bounds of proof size and Ω(n) bounds of proof steps for
tautologies with the length n were known for Frege sys-
tems. Recently the super-linear lower bound for proof
steps has been obtained by the first coauthor for some
fixed Frege system in [2]. Now we prove that in every
Frege system for some sequence of tautologies ϕn the
lower bounds for proof steps (for proof sizes) are super-
linear (super-quadratic) in the lengths of tautologies.
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1. INTRODUCTION
The investigations of the propositional proof complex-
ity are very important due to their relation to the main

problem of the complexity theory P
?
= NP . One of the

most fundamental problems of the proof complexity the-
ory is to find an efficient proof system for propositional
calculus. According to the opinion, a truly ”effective”
system must have a polynomial size p(n) proof for ev-
ery tautology of size n. In [1] Cook and Reckhow named
such a system a super system. They showed that if there
exists a super system, then NP = coNP .

It is well known that many systems are not super. This
question about Frege system, the most natural calculi
for propositional logic, is still open. The trivial expo-
nential upper bounds and only Ω(n2) bounds of proof
sizes and Ω(n) bounds of proof steps for tautologies with
the length n were known for Frege systems. In [2] the
super-linear lower bound for proof steps was obtained
for some fixed Frege system. Now we prove that in ev-
ery Frege system for some sequence of tautologies ϕn

the lower bounds for proof steps (proof sizes) are super-
linear (super-quadratic) in the lenghts of tautologies.

2. PRELIMINARY
We shall use the well known notions of propositional
formula, tautology and depth of subformula occurrence
in formula.

We shall use also the generally accepted concepts of
Frege system [2]. A Frege system F uses a denumerable
set of propositional variables and a finite, complete set

of propositional connectives. F has a finite set of in-
ference rules, defined by a figure of the form A1A2...Am

B
(the rules of inference with zero hypotheses are the ax-
ioms schemes); F must be sound and complete, i.e., for
each rule of inference A1A2...Am

B
every truth-value as-

signment, satisfying A1A2 . . . Am, also satisfies B, and
F must prove every tautology.

For the future we assume that modus ponens is one of
inference rules of considered systems Frege.

We use also the well-known notions of proof and proof
complexities. The proof in any system Φ (Φ-proof) is
a finite sequence of such formulas, each being an axiom
of Φ, or is inferred from earlier formulas by one of the
rules of Φ. Note that every Φ-proof has an associated
graph with nodes, labeled by formulas, and edges from
A to B if formula B is the result of applying of some
inference rule to A (perhaps with another formulas).

For a proof we define t-complexity to be its length
(=the total number of different proof formulae) and l-
complexity to be its size (=the total number of proof
symbols). The minimal t-complexity of a formula ϕ
(l-complexity of a formula ϕ) in a proof system Φ
we denote by tΦ(ϕ) (lΦ(ϕ)).

Let us recall the notion of right-chopping proof, intro-
duced in [3]. For Intuitionistic and Minimal (Johans-
son’s) Logic the following statement is proved.

If the axiom F1 ⊃ (F2 ⊃ (· · · ⊃ (Fm ⊃ G)) · · ·) and
the formulas F1, F2, . . . , Fm are used in the minimal (by
steps) derivation of formula G by successive applying of
the rule modus ponens, then m ≤ 2, i.e. the length of
branch, going to right and upwards from every node of
the corresponding graph, is no more than 2. Such graph
and hence, the corresponding proof are called 2-right-
chopping.

The analogous statement for classical Hilbert style sys-
tems is not valid, but for a Frege system F we can prove
some analogous statement.

Definition 1. If some axioms scheme B of the system
F is in the form B1 ? (B2 ? (. . . (Bk ?Bk+1) . . .)), where
by ? can be denoted each of logical connectives of the
system F , and Bk+1 is metavariable, then k is logical
depth of B.

Definition 2. Maximum of logical depths of all ax-
ioms schemes in the Frege system F is called logical



depth of F and is denoted by ldF .

Definition 3. A proof is called m-right-chopping if
the length of branch, going to right and upwards from
every node of the corresponding graph, is no more than
m.

For proving the main results we use also the notion of
essential subformulas, introduced in [4].

Let F be some formula and Sf(F ) be the set of all non-
elementary subformulas of formula F .

For every formula F , for every ϕ ∈ Sf(F ) and for every
variable p the result of the replacement of the subfor-
mula ϕ everywhere in F by the variable p is denoted by
F p

ϕ. If ϕ /∈ Sf(F ), then F p
ϕ is F .

We denote by V ar(F ) the set of variables in F .

Definition 4. Let p be such a variable that p /∈ V ar(F )
and ϕ ∈ Sf(F ) for some tautology F . We say that ϕ is
an essential subformula of F iff F p

ϕ is non-tautology.

We denote by Essf(F ) the set of essential subformulas
of F .

If F is a minimal tautology, i.e., F is not a substitution
of a shorter tautology, then Essf(F ) = Sf(F ).

In [4] the following statement is proved.

Proposition 1. Let F be a minimal tautology and ϕ ∈
Essf(F ), then in every F-proof of F subformula ϕ must
be essential either in some axiom, used in proof, or
in the formula A1&(A2&(. . . (Am−1&Am) . . .)) ⊃ B for
some inference rule A1A2...Am

B
, used in proof.

Using this statement, we can prove the following right-
chopping property for Frege systems.

Proposition 2. Every F-proof of a formula ϕ can be
transformed into (ld(F) + 2)-right-chopping proof of ϕ
with no more than linear increase both of t-complexity
and l-complexity of original proof.

Definition 5. Let M be a set of essential subformulas
of tautology F . If no one formula of M is a subformula
of some other formula from M , then M is called an
independent set of essential subformulas of F .

Definition 6. Let M be an independent set of essen-
tial subformulas of tautology F . The total sum of max-
imum depths of occurrences in F for all formulas from
M is called a the depth of M in F and is denoted by
dF (M).

Definition 7. The maximum of dF (M) for all inde-
pendent sets M of essential subformulas of tautology F
is called a common depth of F and is denoted by Cd(F ).

The total number of symbols, appearing in a formula ϕ,
we call a size of ϕ and denote by |ϕ|.

For our consideration tautologies ϕn = TTMn,2n−1 ,
play the key role, where

TTMn,m =
∨

(σ1,...,σn)∈En

m

&
j=1

n∨
i=1

pσi
ij .

It is not difficult to see that |ϕn| = n22n and for some
assignment of parentheses Cd(ϕn) = Θ(23n). Really, it

is easy to see that the set M of subformulas
n∨

i=1

pσi
ij is

an independent set of essential subformulas of ϕn. Let’s

denote ψj
σ =

n∨
i=1

pσi
ij , where σ = (σ1, . . . , σn). ϕn will

look like this:

ϕn =
∨

σ∈En

2n−1

&
j=1

ψj
σ.

In a tree-like form it will be:

ϕn =
2n−1

&
j=1

ψj

σ1

∨(
2n−1

&
j=1

ψj

σ2

∨(
· · ·

∨ 2n−1

&
j=1

ψj

σ2n

)
· · ·

)
,

where:

2n−1

&
j=1

ψj

σk =
(
ψ1

σk&
(
ψ2

σk&
(
· · ·&ψ2n−1

σk

))
· · ·

)
.

So the depth of ψj

σk is

depth
(
ψj

σk

)
= k + j,

therefore, Cd(ϕn) ≥ dϕn(M) =

=

2n∑
k=1

2n−1∑
j=1

k + j =

2n∑
k=1

(
k + (2n − 1) 2n−1

)
=

= 2n−1(2n + 1) + 2n(2n − 1)2n−1 = Θ
(
23n

)
.

3. MAIN RESULT
The main result of the paper is the following statement.

Theorem 1.

tF (ϕn) = Ω

(
|ϕn|

√
|ϕn|

log3
2(|ϕn|)

)
,

lF (ϕn) = Ω

(
|ϕn|3

log3
2(|ϕn|)

)
.

Proof of the theorem is based on the following auxiliary
statement.

Lemma 1. If for any Frege system F some formula
B is inferred in (ld(F)+2)-right-chopping proof F from
formulas A1, A2, . . ., Am by one of inference rules of
F , then for some constant c
Cd(B) ≤ max(Cd(A1, Cd(A2), . . . , Cd(Am)) + c.

Proof of Theorem follows from the fact, that common
depth for every axiom and for the formula
A1&(A2&(. . . (Am−1&Am) . . .)) ⊃ B of every inference
rule A1A2...Am

B
, for a Frege system is no more than some

constant, and from the result of Lemma.
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