
Predicate Transformers for Local Description Units
A.A. Letichevsky, O.O. Letychevskyi

Glushkov Institute of Cybernetics,
Academy of Sciences of Ukraine

e-mail: et@cyfra.net, lit@iss.org.ua

ABSTRACT
Predicate transformers are symbolic functions used

for computing transitions of system models with states
represented by means of logic formulas. They are widely
used for symbolic evaluation of programs, verification,
abstract interpretation, and symbolic modeling of software.
The models of software systems considered in this paper are
represented by means of systems of local description units
and their states are represented by means of first order logic
formulas. Our goal is to develop an algorithm for computing
the strongest predicate transformer for local description
units considered as operators over formulas.

Keywords
Predicate transformers, symbolic verification, attributed
transition systems, local description units

1. INTRODUCTION
Local description units are the main component of

requirement specifications in insertion modeling paradigm.
Insertion modeling is a trend that is developing over the last
decade as an approach to a general theory of interaction of
agents and environments in complex distributed multiagent
systems. In recent years, insertion modeling has been
applied to the development of systems for the verification of
requirement specifications of distributed interacting systems
[1,2,3,4,5]. The system VRS, developed in order from
Motorola, has been successfully applied to verify the
requirements and specifications in the field of
telecommunication systems, embedded systems, and real-
time systems. The mathematical foundation of insertion
modeling is presented in [6]. The idea of local descriptions
has been used in [5] where local descriptions were called
basic protocols. Predicate transformer was defined
axiomatically. Exact definition of predicate transformer
used for VRS appeared later but only in [7] it was proved
that predicate transformer of VRS really is the strongest one.
The results of this paper generalize the results obtained in
[7].

2. ATTRIBUTED TRANSITION
SYSTEMS

Predicate transformers considered in this paper were
developed for attributed environments with inserted agents.
But actually our constructions do not depend on the structure
of insertion models and can be reproduced for arbitrary
transition systems with symbolic states. We call such
systems attributed transition systems (or simply attributed
systems) and attributed environments with inserted agents
appear to be special cases.

Attributed systems are based on some logic
framework. This framework includes a set of types (integer,
real, enumerated, symbolic, behavioral, etc.), interpreted in
some data domains. A framework includes symbols to
denote constants of these domains, and a set of typed
functions and predicate symbols. Some of these symbols are
interpreted (e.g., arithmetic operations and inequalities,
equality for all types, etc.). Uninterpreted function and

predicate symbols are called attributes. Uninterpreted
function symbols of arity 0 are called simple attributes, the
other –functional attributes (uninterpreted predicate symbol
is considered as a functional one with the binary values
domain {0,1}). Function symbols are used to define data
structures such as arrays, lists, trees, etc.

The basic logic language is built over a logic
framework of attributed transition system. In this paper we
shall consider only a first order language. Attribute
expression is a simple attribute or an expression of the form

),...,(1 nttf , where f is a functional attribute of arity n,

ntt ,...,1 are already constructed attribute expressions or
constants of suitable types. If all arguments of attribute
expression are constants, then it is called a constant
expression.

In general, the state of attributed system is the
formula of basic language. Attributed transition systems are
divided into two classes: the concrete and the symbolic ones.

A state of concrete attributed transition system is a
formula of the form nn atatat =∧∧=∧= ...2211 , where

ntt ,...,1 are different constant attribute expressions,

naa ,...,1 are constants. Typically, such a formula is

represented as a partial mapping with domain },...,{ 1 ntt and
range equal to the set of all constants. It is natural to call this
formula a memory state. Of course a formula must be type
consistent (the type of the value of),...,(1 nttf must be
equal to the type of the range of a function symbol f).

The states of symbolic attributed transition system
are arbitrary formulas of basic language.

Sometimes it is useful to consider an extended
notion of a concrete transition system with an infinite
number of attribute expressions, which have concrete
values. This corresponds to infinite conjunctions or a
function with infinite domain. Such function is a mapping

DAttr →:σ from the set Attr of all constant attribute
expressions to the set of their values D (consistent with
types). The mapping σ is naturally extended to the set of
all expressions of a given system and to formulas of a given
logic framework.

3. LOCAL DESCRIPTION UNITS
Local description units are used to specify the

behavioral properties of attributed systems.
We shall consider local properties of a system

represented as a concrete or symbolic attributed system.
Local description unit of the attributed system is a formula

)(βα >→<∀ Px , where x is a list of (typed) parameters,
α and β – basic language formulas, P – process (finite
behavior of the specified system). Formula α is called the
precondition, and the formula β – the postcondition of
local description unit. Both the conditions and the behavior
of the unit may depend on parameters. Local description unit
can be considered as a temporal logic formula that expresses
the fact that, if (for suitable values of parameters) the state

of a system satisfies the precondition, the behavior P can be
activated and, after its successful termination, the new state
will satisfy the postcondition.

Postconditions can contain assignments yxf =:)(,

where)(xf is an attribute expression and y is an algebraic
expression. This assignment is considered as a simple
temporal logic statement which asserts that a new value of f
in the point equal to the old value of attribute expression x
is equal to the old value of algebraic expression y. Therefore,
the local description unit)):)(((βα ∧=>→<∀ yxfPz is
equivalent to

)))(()()()(,,(βα ∧=>→<=∧=∧∀ vufPvyuxzvu .
Local description units, which are used in the input

language of VRS system are called basic protocols. They
are the main units for expressing formal requirements to
multiagent and distributed systems. Basic protocols are
expressed in the basic language of the system VRS, and to
represent the processes MSC diagrams are used in basic
protocols. To study semantics underlying protocols several
approaches were developed for the construction of such
semantics. These approaches are described in [5] and in [8].
They are based on the notions of abstraction and
implementation of a set of local descriptions.

There are two kinds of semantics: big step semantics
and short step semantics. Both define a transition system on
the set of concrete or symbolic states of attributed system.
The set of actions of a big step semantics are local
description units, in a short step semantics the set of actions
consists with actions used in processes of local description
units. Local description units define operators on a set of
states of systems and they can be performed concurrently.
In big step semantics this concurrency is hidden, in a short
step semantics it is defined explicitly. In the sequel we shall
consider only big step semantics.

To define big step semantics of local descriptions
we use the notion of predicate transformer. Predicate
transformer pr is a function that maps a formula of basic
language to new formula. This function is used to define a
big step transition system for symbolic attributed system as
follows. Let)(βα >→<∀= PxD be a local description
unit. Then

).0())),((
()0)((

≠′∧∧∃=
=′∧≠∃∧⇔′→

ssprx
sxsss B

βα
α

In the expression),(βα∧spr symbol x denotes a
list of new simple attributes added to system, and after
bounding this formula by existential quantifier it again is
considered as a list of variables. Of course, if some
collisions may appear, the symbols of the list x must be
renamed.

The main requirement for the function pr is the
relation ββ =|),(spr .

A big step transition system is deterministic. It
means that s' is a function of s and we shall use the notation

)(sBs =′ . We also require that predicate transformer
function would be monotone and distributive.

4. PREDICATE TRANSFORMER

There are many functions pr, which satisfy the main
requirement to predicate transformer. The weakest is simply

ββ =),(spr . It is not a good choice, because we lost
completely the information about the state s. Following the
Dijkstra methodology of predicate transformers [9] we
would like to define the strongest predicate transformer like
the strongest postcondition for a given precondition s after

performing of postcondition β of a local description unit,
considered as an operator over the formulas of basic
language.

To refine the notion of the strongest predicate
transformer let us consider the transition system with states
of a symbolic attributed environment and postconditions as
actions:),(ββ sptsss =′⇔′→ . Let us compare the
execution of a postconditions over a concrete and symbolic
attribute environment. Symbolic attributed environment is
used to simulate concrete environments. Each state of
symbolic environment s “covers” the set of states of
concrete environment. This set consists of the statesσ such
that s=|σ . The simulation condition can be formulated as

.||,, ssss ′=′⇒=′→′→ σσσσ ββ
To refine this condition we must define transition

relation on the set of concrete states. The state of concrete
environment is a formula, so postconditions can be applied
to concrete states as well, but the result in general is not
concrete, so this semantics must be modified, to preserve
concreteness. The natural definition for concrete
environment is the following:

),,(|, βσσβσσσ β ′∧=′⇔′→ Ch .

Here the condition),,(βσσ ′Ch restricts the possible
changes of the values of attribute expressions after transition
from σ to σ ′ by means of operator β . In the case when
β is assignment the definition of Ch is clear: only left hand
side of assignment can change its value. To consider a
general case we assume that CR ∧=β , where R is a
conjunction of assignments, and C is a formula of basic
language. A formula C can contain quantifiers, so attribute
expressions can contain variables. By definition the
following attribute expressions can change their values:

1. left hand sides of assignments,
2. outermost occurrences of attribute expressions in

C which do not contain variables,
3. the results of substituting arbitrary constants

instead of variables into outermost occurrences of
attribute expressions in C.

Let us assume that each postcondition is supplied by
the set)(βChange that includes the set of all attribute
expressions obtained from the enumeration above. This set
can contain more attribute expressions which are considered
as changing in arbitrary way as a result of some hidden
activity and interaction with external environment. Now
predicate Ch can be defined as follows:

)).()(
))(()((),,(

tt
ChangetAttrtCh

σσ
βσβσσ

′=⇒
⇒∉∈∀⇔′

So transitions of concrete systems are defined
completely and we can define),(βspt as the strongest
condition s' that satisfies the simulation condition. For this
purpose the inverse condition ss =⇒′=′ || σσ for some

σ such that σσ β ′→ must be added. Finally, the
strongest predicate transformer is defined as the condition
satisfying the following two properties:

ssss ′=′⇒=′→′→ ||,, σσσσ ββ

).|,()|,(ssss =′→∃⇒′=′′→ σσσσσ ββ
From this definition the existence of the strongest predicate
transformer and its uniqueness is obvious. In the sequel we
shall use the symbol pr for the strongest predicate
transformer.

The strongest predicate transformer pt exists but
the possibility to express it in basic language of symbolic
attributed environment is not obvious. In [7] formula

),(βspt was defined as a first order formula of the basic
language of VRS for the case when s uses only existential
quantifiers and β is a quantifierless formula. Now we shall
generalize this result for arbitrary first order formulas with
some restrictions to terms of)(βChange .

We want to compute),(βspt for the state s of
symbolic attribute environment and postcondition

CR ∧=β where s and C are first order formulas of basic

language, and):(,...):,:(2211 trtrtrR ===== is a
parallel assignment. Four cases will be considered: case 1
corresponds to only simple attributes in the set

)(βChange , case 2 restricts the set)(βChange to
attribute expressions without variables, case 3 allows
variables bound by external universal quantifiers of C, and
the case 4 allows only variables bounded by external
universal quantifiers of formulas s and C. Let us consider a
set),(βsUnch along with)(βChange . This set consists
with outermost occurrences of attribute expressions in s
which are not in)(βChange .

Let us represent the sets)(βChange and

),(βsUnch by lists Q ,...),(21 qq= and

Z ,...),(21 zz= . If an element of the list Q contains a
variable, no substitution is needed. Only mark the
occurrence of a variable by the quantifier that bounds it.
Consider also a list X ,...),(21 xx= of variables, set to one-
to-one correspondence with the expressions from the list Q.

We shall use the following notation for substitution:
))(|)(:)(:(vPvtvsvsubs ==ϕ . Here v is a list of

variables for matching. The result)(Eϕ of application of a
substitution ϕ to expression E is obtained by simultaneous
replacement of all outermost occurrences of expressions of
the form)(vs such that v satisfies condition)(vP to)(vt .
This substitution is equivalent to conditional rewriting rule
applied with parallel outermost strategy. Substitution
without matching is denoted as)|:(Iitssubs ii ∈= and
also refers to outermost occurrences. This substitution is
considered as a set of unconditional rewriting rules applied
with parallel outermost strategy. The following theorems
can be proved.

Theorem 1. If all attributes in the list Q have arity
0 then

Ctrsxspt ∧=∧∃=)))(()((),(ϕϕβ

where ,...)2,1|(=== ixqsubs iiϕ .
Theorem 2. If attribute expressions of lists Q and Z

do not contain variables then pt can be expressed by the first
order formula.

Let Z}Q ∈∈= ,f(v)ufvuM)(|),{(.

Enumerating all subsets of the set M as ,...),(21 JJ we
can enumerate all combinations of equalities and
inequalities:

)()(
\),(),(

vuvuE
ii JMvuJvui ≠∧==

∈∈
∧∧

Let ϕξϕ += ii , where

).)(,),(,)(|:)(:(jiji qufJvuvfxvfvsubs =∈∈== Zξ

The strongest predicate transformer is defined by the
following formulas:

...)(),(21 ∧∧∃= ppxspt β

)(CRsEp iiii ∧∧→′=

))(:))(((),(),(turRssEE iiiiiiii ϕϕϕϕ ====′
This case is slightly more general than the result of

[7].
Theorem 3. Let CyC ′∀= and be in a prenex

normal form. Let all attribute expressions from the list Q
have no variables except of the variables from the list y and
attribute expressions from the list Z have no variables at all.
Then

...)(),(21 ∧∧∀∃= ppyxspt β

)(CRsEp iiii ′∧∧→′=

Theorem 4. Let CzCsys ′∀=′∀= , and both
formulas be in a prenex normal form. Let all attribute
expressions from the list Z have no variables except of the
variables from the list y and all attribute expressions from
the list Q have no variables except of the variables from the
list z. Then

...)(),(21 ∧∧∀∀∃= ppzyxspt β

)(CRsEp iiii ′∧∧′→′=
where all notations are the same as in the proof of theorem
2, but)(ss ii ϕ=′ .

Transitions of local descriptions are computed as
follows. Reduce the conjunction α∧s of the state of
environment and the precondition of a local description

)(βα >→<∀= PxB to prenex normal form. Let this

normal form be zu∃ . Compute),(βuprv = if u and β
satisfy one of three conditions of theorems 1-4. The
variables of a list z are considered as attributes. The result
will be zvxsB ∃∃=)(.

5. CONCLUSIONS

Symbolic verification methods for models described
in the paper were implemented in IMS system developed in
Glushkov institute of Cybernetics of the National Academy
of Sciences of Ukraine. The use of universal quantifier in
local descriptions allows description of system with
unbounded number of agents and easy abstraction for
complete verification.

REFERENCES
[1] Baranov, S., Jervis, C., Kotlyarov, V., Letichevsky, A.,

Weigert, T.: Leveraging UML to deliver correct telecom
applications in UML for Real. In.: Lavagno, L., Martin,
G., Selic, B. (eds) Design of Embedded Real-Time
Systems, Kluwer Academic Publishers, pp. 323-342,
2003.

[2] Letichevsky, A., Weigert, T., Kapitonova,J. and
Volkov, V.: Validation of Embedded Systems. In R.
Zurawski, editor. The Embedded Systems Handbook,
CRC Press, Miami, 2005.

[3] Letichevsky, A., Letichevsky, A.Jr., Kapitonova, J.,
Volkov, V., Baranov,S., Kotlyarov, V., Weigert, T.:
Basic Protocols, Message Sequence Charts, and the
Verification of Requirements Specifications, ISSRE
2004, WITUL (Workshop on Integrated reliability with
Telecommunications and UML Languages), Rennes,
4 November 2005.

[4] Letichevsky, A. Kapitonova,J. Letichevsky A. Jr.,
Volkov,V. Baranov, S. Kotlyarov,V. Weigert T. : Basic
Protocols, Message Sequence Charts, and the

Verification of Requirements Specifications. Computer
Networks, V. 47, pp.662-675, 2005.

[5] Letichevsky, A., Kapitonova,J., Volkov, V.,
Letichevsky, A.A.Jr., Baranov,S., Kotlyarov, V., and
Weigert T. : System Specification with Basic Protocols.
Cybernetics and System Analysis, V. 4, 2005.

[6] Letichevsky A.: Algebra of behavior transformations
and its applications. In V.B.Kudryavtsev and
I.G.Rosenberg eds. Structural theory of Automata,
Semigroups, and Universal Algebra, NATO Science
Series II. Mathematics, Physics and Chemistry - V. 207,
pp. 241-272, Springer, 2005.

[7] Letichevsky, A.A., Godlevsky, A.B., Letichevsky,
A.A.Jr., Potienko S.V., Peschanenko, V.A.: The
properties of predicate transformer of the VRS system.
Cybernetics and System Analysis, V. 4, pp. 3-16, 2010.

[8] Letichevsky, A.A., Kapitonova, J.V., Kotlyarov, V.P.,
Letichevsky, A.A.Jr., Nikitchenko,N.S., Volkov,V.A.,
and Weigert,T.: Insertion modeling in distributed
system design, Problems in Programming 4, pp. 13-38,
Institute of Programming Systems, 2008.

[9] Edsger W. Dijkstra,: Guarded commands,
nondeterminacy and formal derivation of programs,
CACM August 1975, V. 18, N 8, pp. 453-457, 1975.

