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ABSTRACT 
Predicate transformers are symbolic functions used 

for computing transitions of system models with states 
represented by means of logic formulas. They are widely 
used for symbolic evaluation of programs, verification, 
abstract interpretation, and symbolic modeling of software. 
The models of software systems considered in this paper are 
represented by means of systems of local description units 
and their states are represented by means of first order logic 
formulas. Our goal is to develop an algorithm for computing 
the strongest predicate transformer for local description 
units considered as operators over formulas.  
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1. INTRODUCTION
Local description units are the main component of 

requirement specifications in insertion modeling paradigm. 
Insertion modeling is a trend that is developing over the last 
decade as an approach to a general theory of interaction of 
agents and environments in complex distributed multiagent 
systems. In recent years, insertion modeling has been 
applied to the development of systems for the verification of 
requirement specifications of distributed interacting systems 
[1,2,3,4,5]. The system VRS, developed in order from 
Motorola, has been successfully applied to verify the 
requirements and specifications in the field of 
telecommunication systems, embedded systems, and real-
time systems. The mathematical foundation of insertion 
modeling is presented in [6]. The idea of local descriptions 
has been used in [5] where local descriptions were called 
basic protocols. Predicate transformer was defined 
axiomatically. Exact definition of predicate transformer 
used for VRS appeared later but only in [7] it was proved 
that predicate transformer of VRS really is the strongest one. 
The results of this paper generalize the results obtained in 
[7]. 

2. ATTRIBUTED TRANSITION
SYSTEMS

Predicate transformers considered in this paper were 
developed for attributed environments with inserted agents. 
But actually our constructions do not depend on the structure 
of insertion models and can be reproduced for arbitrary 
transition systems with symbolic states. We call such 
systems attributed transition systems (or simply attributed 
systems) and attributed environments with inserted agents 
appear to be special cases.   

Attributed systems are based on some logic 
framework. This framework includes a set of types (integer, 
real, enumerated, symbolic, behavioral, etc.), interpreted in 
some data domains. A framework includes symbols to 
denote constants of these domains, and a set of typed 
functions and predicate symbols. Some of these symbols are 
interpreted (e.g., arithmetic operations and inequalities, 
equality for all types, etc.). Uninterpreted function and 

predicate symbols are called attributes. Uninterpreted 
function symbols of arity 0 are called simple attributes, the 
other –functional attributes (uninterpreted predicate symbol 
is considered as a functional one with the binary values 
domain {0,1}). Function symbols are used to define data 
structures such as arrays, lists, trees, etc. 

The basic logic language is built over a logic 
framework of attributed transition system. In this paper we 
shall consider only a first order language. Attribute 
expression is a simple attribute or an expression of the form 

),...,( 1 nttf , where f is a functional attribute of arity n, 

ntt ,...,1 are already constructed attribute expressions or 
constants of suitable types. If all arguments of attribute 
expression are constants, then it is called a constant 
expression. 

In general, the state of attributed system is the 
formula of basic language. Attributed transition systems are 
divided into two classes: the concrete and the symbolic ones. 

A state of concrete attributed transition system is a 
formula of the form nn atatat =∧∧=∧= ...2211 , where 

ntt ,...,1 are different constant attribute expressions, 

naa ,...,1 are constants. Typically, such a formula is 

represented as a partial mapping with domain },...,{ 1 ntt and 
range equal to the set of all constants. It is natural to call this 
formula a memory state. Of course a formula must be type 
consistent (the type of the value of ),...,( 1 nttf must be 
equal to the type of the range of a function symbol f). 

The states of symbolic attributed transition system 
are arbitrary formulas of basic language. 

Sometimes it is useful to consider an extended 
notion of a concrete transition system with an infinite 
number of attribute expressions, which have concrete 
values. This corresponds to infinite conjunctions or a 
function with infinite domain. Such function is a mapping

DAttr →:σ from the set Attr of all constant attribute 
expressions to the set of their values D (consistent with 
types). The mapping σ is naturally extended to the set of 
all expressions of a given system and to formulas of a given 
logic framework.  

3. LOCAL DESCRIPTION UNITS
Local description units are used to specify the 

behavioral properties of attributed systems. 
We shall consider local properties of a system 

represented as a concrete or symbolic attributed system. 
Local description unit of the attributed system is a formula

)( βα >→<∀ Px , where x is a list of (typed) parameters, 
α and β  – basic language formulas, P – process (finite 
behavior of the specified system).  Formula α is called the 
precondition, and the formula β  – the postcondition of 
local description unit. Both the conditions and the behavior 
of the unit may depend on parameters. Local description unit 
can be considered as a temporal logic formula that expresses 
the fact that, if (for suitable values of parameters) the state 



of a system satisfies the precondition, the behavior P can be 
activated and, after its successful termination, the new state 
will satisfy the postcondition.  

Postconditions can contain assignments yxf =:)( , 

where )(xf is an attribute expression and y is an algebraic 
expression. This assignment is considered as a simple 
temporal logic statement which asserts that a new value of f 
in the point equal to the old value of attribute expression x 
is equal to the old value of algebraic expression y. Therefore, 
the local description unit )):)((( βα ∧=>→<∀ yxfPz is 
equivalent to 

)))(()()()(,,( βα ∧=>→<=∧=∧∀ vufPvyuxzvu . 
Local description units, which are used in the input 

language of VRS system are called basic protocols. They 
are the main units for expressing formal requirements to 
multiagent and distributed systems.  Basic protocols are 
expressed in the basic language of the system VRS, and to 
represent the processes MSC diagrams are used in basic 
protocols. To study semantics underlying protocols several 
approaches were developed  for the construction of such 
semantics. These approaches are described in [5] and in [8]. 
They are based on the notions of abstraction and 
implementation of a set of local descriptions.  

There are two kinds of semantics: big step semantics 
and short step semantics. Both define a transition system on 
the set of concrete or symbolic states of attributed system. 
The set of actions of a big step semantics are local 
description units, in a short step semantics the set of actions 
consists with actions used in processes of local description 
units. Local description units define operators on a set of 
states of systems and they can be performed concurrently. 
In big step semantics this concurrency is hidden, in a short 
step semantics it is defined explicitly. In the sequel we shall 
consider only big step semantics.   

To define big step semantics of local descriptions 
we use the notion of predicate transformer. Predicate 
transformer pr is a function that maps a formula of basic 
language to new formula. This function is used to define a 
big step transition system for symbolic attributed system as 
follows. Let )( βα >→<∀= PxD be a local description 
unit. Then  

).0())),((
()0)((
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In the expression ),( βα∧spr symbol x denotes a 
list of new simple attributes added to system, and after 
bounding this formula by existential quantifier it again is 
considered as a list of variables. Of course, if some 
collisions may appear, the symbols of the list x must be 
renamed.  

The main requirement for the function pr is the 
relation ββ =|),(spr .  

A big step transition system is deterministic. It 
means that s' is a function of s and we shall use the notation 

)(sBs =′ . We also require that predicate transformer 
function would be monotone and distributive.  

 
4. PREDICATE TRANSFORMER 

There are many functions pr, which satisfy the main 
requirement to predicate transformer. The weakest is simply 

ββ =),(spr . It is not a good choice, because we lost 
completely the information about the state s. Following the 
Dijkstra methodology of predicate transformers [9] we 
would like to define the strongest predicate transformer like 
the strongest postcondition for a given precondition s after 

performing of postcondition β of a local description unit, 
considered as an operator over the formulas of basic 
language.  

To refine the notion of the strongest predicate 
transformer let us consider the transition system with states 
of a symbolic attributed environment and postconditions as 
actions: ),( ββ sptsss =′⇔′→ . Let us compare the 
execution of a postconditions over a concrete and symbolic 
attribute environment. Symbolic attributed environment is 
used to simulate concrete environments. Each state of 
symbolic environment s “covers” the set of states of 
concrete environment. This set consists of the statesσ such 
that s=|σ . The simulation condition can be formulated as  

.||,, ssss ′=′⇒=′→′→ σσσσ ββ  
To refine this condition we must define transition 

relation on the set of concrete states. The state of concrete 
environment is a formula, so postconditions can be applied 
to concrete states as well, but the result in general is not 
concrete, so this semantics must be modified, to preserve 
concreteness. The natural definition for concrete 
environment is the following:   

),,(|, βσσβσσσ β ′∧=′⇔′→ Ch . 

Here the condition ),,( βσσ ′Ch restricts the possible 
changes of the values of attribute expressions after transition 
from σ  to σ ′ by means of operator β . In the case when 
β  is assignment the definition of Ch is clear: only left hand 
side of assignment can change its value. To consider a 
general case we assume that CR ∧=β , where R is a 
conjunction of assignments, and C is a formula of basic 
language. A formula C can contain quantifiers, so attribute 
expressions can contain variables. By definition the 
following attribute expressions can change their values:  

1. left hand sides of assignments, 
2. outermost occurrences of attribute expressions in 

C which do not contain variables,  
3. the results of substituting arbitrary constants 

instead of variables into outermost occurrences of 
attribute expressions in C. 

Let us assume that each postcondition is supplied by 
the set )(βChange that includes the set of all attribute 
expressions obtained from the enumeration above. This set 
can contain more attribute expressions which are considered 
as changing in arbitrary way as a result of some hidden 
activity and interaction with external environment. Now 
predicate Ch can be defined as follows: 

)).()(
))(()((),,(
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So transitions of concrete systems are defined 
completely and we can define ),( βspt as the strongest 
condition s' that satisfies the simulation condition. For this 
purpose the inverse condition ss =⇒′=′ || σσ for some 

σ  such that σσ β ′→ must be added. Finally, the 
strongest predicate transformer is defined as the condition 
satisfying the following two properties:   

ssss ′=′⇒=′→′→ ||,, σσσσ ββ  

).|,()|,( ssss =′→∃⇒′=′′→ σσσσσ ββ  
From this definition the existence of the strongest predicate 
transformer and its uniqueness is obvious. In the sequel we 
shall use the symbol pr for the strongest predicate 
transformer. 



The strongest predicate transformer pt exists but 
the possibility to express it in basic language of symbolic 
attributed environment is not obvious. In [7] formula 

),( βspt was defined as a first order formula of the basic 
language of VRS for the case when s uses only existential 
quantifiers and β  is a quantifierless formula. Now we shall 
generalize this result for arbitrary first order formulas with 
some restrictions to terms of )(βChange .   

We want to compute ),( βspt  for the state s of 
symbolic attribute environment and postcondition 

CR ∧=β  where s and C are first order formulas of basic 

language, and ):(,...):,:( 2211 trtrtrR =====  is a 
parallel assignment. Four cases will be considered: case 1 
corresponds to only simple attributes in the set 

)(βChange , case 2 restricts the set )(βChange to 
attribute expressions without variables, case 3 allows 
variables bound by external universal quantifiers of C, and 
the case 4 allows only variables bounded by external 
universal quantifiers of formulas s and C. Let us consider a 
set ),( βsUnch along with )(βChange . This set consists 
with outermost occurrences of attribute expressions in s 
which are not in )(βChange . 

Let us represent the sets )(βChange  and 

),( βsUnch  by lists Q ,...),( 21 qq=  and  

Z ,...),( 21 zz= . If an element of the list Q contains a 
variable, no substitution is needed. Only mark the 
occurrence of a variable by the quantifier that bounds it.  
Consider also a list X ,...),( 21 xx=  of variables, set to one-
to-one correspondence with the expressions from the list Q.  

We shall use the following notation for substitution: 
))(|)(:)(:( vPvtvsvsubs ==ϕ . Here v is a list of 

variables for matching. The result )(Eϕ  of application of a 
substitution ϕ  to expression E is obtained by simultaneous 
replacement of all outermost occurrences of expressions of 
the form )(vs such that v satisfies condition )(vP to )(vt . 
This substitution is equivalent to conditional rewriting rule 
applied with parallel outermost strategy. Substitution 
without matching is denoted as )|:( Iitssubs ii ∈= and 
also refers to outermost occurrences. This substitution is 
considered as a set of unconditional rewriting rules applied 
with parallel outermost strategy.  The following theorems 
can be proved. 

Theorem 1. If all attributes in the list Q have arity 
0 then 

Ctrsxspt ∧=∧∃= )))(()((),( ϕϕβ  

where ,...)2,1|( === ixqsubs iiϕ .  
Theorem 2. If attribute expressions of lists Q and Z 

do not contain variables then pt can be expressed by the first 
order formula. 

Let Z}Q ∈∈= ,f(v)ufvuM )(|),{( . 

Enumerating all subsets of the set M as ,...),( 21 JJ we 
can enumerate all combinations of equalities and 
inequalities: 

)()(
\),(),(

vuvuE
ii JMvuJvui ≠∧==

∈∈
∧∧  

Let ϕξϕ += ii , where 

).)(,),(,)(|:)(:( jiji qufJvuvfxvfvsubs =∈∈== Zξ   

The strongest predicate transformer is defined by the 
following formulas: 

...)(),( 21 ∧∧∃= ppxspt β  

)( CRsEp iiii ∧∧→′=  

))(:))(((),(),( turRssEE iiiiiiii ϕϕϕϕ ====′  
This case is slightly more general than the result of 

[7].  
Theorem 3. Let CyC ′∀=  and be in a prenex 

normal form. Let all attribute expressions from the list Q 
have no variables except of the variables from the list y and 
attribute expressions from the list Z have no variables at all. 
Then  

...)(),( 21 ∧∧∀∃= ppyxspt β  

)( CRsEp iiii ′∧∧→′=  

Theorem 4. Let CzCsys ′∀=′∀= , and both 
formulas be in a prenex normal form. Let all attribute 
expressions from the list Z have no variables except of the 
variables from the list y and all attribute expressions from 
the list Q have no variables except of the variables from the 
list z. Then  

...)(),( 21 ∧∧∀∀∃= ppzyxspt β  

)( CRsEp iiii ′∧∧′→′=  
where all notations are the same as in the proof of theorem 
2, but )(ss ii ϕ=′ . 

Transitions of local descriptions are computed as 
follows. Reduce the conjunction α∧s of the state of 
environment and the precondition of a local description 

)( βα >→<∀= PxB to prenex normal form. Let this 

normal form be zu∃ . Compute  ),( βuprv = if u and β
satisfy one of three conditions of theorems 1-4. The 
variables of a list z are considered as attributes. The result 
will be zvxsB ∃∃=)( .   

 
5. CONCLUSIONS 

Symbolic verification methods for models described 
in the paper were implemented in IMS system developed in 
Glushkov institute of Cybernetics of the National Academy 
of Sciences of Ukraine. The use of universal quantifier in 
local descriptions allows description of system with 
unbounded number of agents and easy abstraction for 
complete verification.    
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