
Frontal Cellular Automata for the Study of Non-Equilibrium
Lattice Models

Hayk, Poghosyan
Institute for Informatics and Automation Problems,

NAS of Armenia
Yerevan, Armenia

e-mail: haykpoghos@gmail.com

Vahagn, Poghosyan
Institute for Informatics and Automation Problems,

NAS of Armenia
Yerevan, Armenia

e-mail: povahagn@gmail.com

ABSTRACT
This paper provides frontal cellular automata algorithms
for abelian sandpile models. Also we calculate the height
probabilities on a 2D lattice with fractal boundaries.

Keywords
frontal cellular automata, lattice models, stochastic pro-
cesses, sandpile model, loop erased random walk, frac-
tals

1. INTRODUCTION
The Abelian sandpile model.[6, 9](ASM) also known as
the Bak Tang Wiesenfeld(BTW model originally pro-
posed by Bak at.[1] is a dynamical system with essential
properties of self-organized criticality (SOC). The char-
acterization of the SOC state has two aspects, dynami-
cal and structural. The first one, implies a description of
avalanches, their duration, mass, linear extent, perime-
ter, etc. The structural characteristics of the sandpile
are fractional numbers of sites having a given height and
correlations between heights at different sites in a typ-
ical allowed configuration. The model is a cellular au-
tomata, which allows using CA algorithms for research.
The most natural formulation of a 2D lattice ASM is
in terms of discrete height variables, take on four in-
tegral values 1 to 4 and are located at the sites of a
grid. The configuration of the sandpile, formed by the
values of the heights, evolves under a stochastic dynam-
ics, which eventually reaches a stationary regime, where
the configurations are weighted according to an invari-
ant measure.
The height properties have been calculated for an infi-
nite lattice, also for upper half plane and various other
elementary boundaries[2, 3, 4, 5, 8]. In this paper we
take fractals as boundaries taking into account their self
repeating nature.
ASM is strongly correlated with the rotor-router model
and loop-erased random walks. The researches of the
late decades showed the connection between the ASM
and diverse phenomena such as: earthquakes, luminos-
ity of stars, river flows, coagulation, relaxation phenom-
ena in magnets, and neural networks. Another interest-
ing feature is its connection to conformal field theory
(CFT) models. In particular, for 2D ASM, the asso-
ciated conformal field theory is suggested to be sym-
plectic fermions with central charge c=-2. Furthermore,
some operators in the logarithmic conformal field theo-
ries(LCFT) model which correspond to different clusters

in ASM are found. LCFT are believed to describe the
continuum limit of certain non-equilibrium lattice mod-
els, like dense polymers, sandpile models, dimer models
and percolation, as well as the infinite series of the lat-
tice models recently defined.

2. CELLULAR AUTOMATA
Cellular automata are consisted of a grid whose nodes
are finite automata. Each node has a finite set of states
and transition rules which depending on the node, the
state of the node, the state of its neighbors and the mo-
ment of time change the state of the node. In the general
case the neighbors of a node can be chosen arbitrarily.
The general CA is a loosely defined model which allows
representing a great number of models and systems as
CAs. In our case we assume that the CA is frontal
cellular automaton. The difference in general CAs and
FCAs is in their transition rules and the number of ac-
tive nodes (if a node acted by a transition rule changes
its state it’s named active). A general FCAs transi-
tion rules do not depend on the time, also the number
of active nodes is far smaller then the number of nodes.
The latter criterion ensures a much faster speed in com-
parison to general CAs. The following is the classical
algorithm for FCAs relaxation.

Algorithm 1 The relaxation of the asynchronous
frontal cellular automata

1: for all x ∈ V do
2: if x.isUnstable() then
3: stack.push(x)
4: bitmap[x] ← 1
5: else
6: bitmap[x] ← 0
7: end if
8: end for

9: while stack.containsElement() do
10: x ← stack.pop()
11: bitmap[x] ← 0
12: while x.isUnstable() do
13: computeNewValue(x)
14: for all y ∈ adj [x] do
15: sendMessage(x, y)
16: if y.isUnstable() ∧ bitmap[y] = 0 then
17: stack.push(y)
18: bitmap[y] ← 1
19: end if
20: end for
21: end while
22: end while

3. ABELIAN SANDPILE MODEL
We denote by G = (V,E) a directed finite graph where
V is the set of vertices and E is the set of directed edges.
In this model we allow self loops and multiple edges.
We denote by E(v) and dv(out degree) the set of edges
whose first or second component is v and the number of
edges whose first component is vertex v accordingly. A
vertex is a sink if its dv = 0.
We label the vertices of G by v1, v2, ..., vn (|V | = n).
The Laplacian ∆ of G will be an n× n matrix with the
following components:

∆ij =

{
−aij for i ̸= j

di − aii for i = j
i, j ∈ 1, 2, ..., n,

where aij is the number of (vi, vj) edges.
We associate every vertex with, a non negative inte-
ger h(v) which is the number of sand grains on the
vertex (if it is a sink, we consider it to be always 0).
A configuration or state of sand piles is an one line
(or row) matrix of all h(v). We denote it by h =
{h(v1), h(v2), h(v3), ..., h(vn)}. The sand piles are in a
stable configuration if for any h(v) < dv. If for the given
vertex v, the height h(v) > dv then we consider this ver-
tex as active and in that case we can topple it. The new
configuration after toppling will be h′ = h−∆v, where
∆v is a row associated to the vertex v in the Laplacian
matrix. We say there is a path from vi to vj if there
exists a sequence of ei, ei+1, ..., ej , where for every non
ending edge his second component is equal to the firs
component of the next edge. If for every vertex there is
a path to a sink then this state can always be toppled
to a stable state. We refer such graphs to be graphs
with global sink and from here we will deal with such
graphs.
We denote by Evi the sand grain addition operator
which acts on the state as follows: Evih is equal to the
stabilized h = {h(v1), h(v2), h(v3), ..., h(vi+1), ..., h(vn)}.
It’s proven that in the sandpile models with a global
sink the sand grain addition operator is commutative,
this property is called the abelian property and a sand-
pile model with this property abelian sandpile model.
The number of stable configurations is

∏
i ∆ii, i ∈ 1, 2, 3..., n

where the product is over all non-sink vertices i. If a
stable configuration can be reached from any configu-
ration by using the operator Ev then we say it’s a re-
current configuration[6]. The number of recurrent con-
figurations is det∆. The recurrent configurations form
a group. A natural question arises: what is the prob-
ability of a concrete vertex having a concrete number
of sand grains if it’s in a recurrent configuration? The
most trivial method is to generate all the stable con-
figurations, then separate recurrent configurations and
calculate the above mentioned probabilities. Generat-
ing stable configurations isn’t difficult. If σ is a recur-
rent configuration, then (σ + ϵ)◦ = σ equation is true,
where ϵ = (2δ)−(2δ)◦. Here the δ configuration is given
by δ(v) = dv, and with this formula we can determine
if it is stable or not. For a 100 × 100 quadratic lat-
tice the number of stable configurations will be 410000

which is far grater than the number of elementary par-
ticles in the observed universe (1086). A solution to
this dilemma might be a statistical approach where we
don’t generate all stable configurations but only a ran-
domly chosen subset. The second problem is connected
to (σ+ϵ)◦ = σ equation which computes relatively slow
and for large lattices is unusable. Fortunately, there is
a one to one mapping between recurrent configurations

and spanning trees.

4. LOOP ERASED RANDOM WALK AND
WILSON’S METHOD

Wilson’s method[11] is a way to generate spanning trees
on a given graph. We choose this particular method
due to uniform generation of the trees, also the resolu-
tion is computationally and resource efficient. A walk
in G(V,E) is a sequence of vertices v0, v1, ... where for
any vi and vi+1 there is an (vi, vi+1) edge. We define a
path as a walk where all vertices are distinct. Lawler[10]
defined the loop-erasure LE(v) operator as the path ob-
tained by deleting the cycles in chronological order from
walk v as follows:

LE(v) = (vs(0), vs(1), ..., vs(J)),

where s(0) = 0 and for j ≥ 0,

s(j + 1) = 1 +max{i|vi = vs(j)}

A loop erased random walk is obtained by using the
operation LE on a random walk.
The following is Wilson’s method. Let G = (V,E) be
a finite connected graph. Pick up any vertex r ∈ V ,
and name it as ”root”. We define a growing sequence
of subtrees T (i), i ≥ 0. We let T (0) := {r} and we let
< v1, v2, ..., vn−1, r > be an enumeration of V . Suppose
T (i) has been generated. Start a LORW at vi+1 and
stop when it hits T (i)

T (i+ 1) := T (i) ∪ LE walk from vi+1 toT (i)).

5. HEIGHT PROBABILITIES OF A FRAC-
TAL BOUNDED LATTICE

We use as boundaries two kinds of fractals. These are
created by acting on a square graphs vertices with frac-
tal operations. The deforming operation which creates
fractals we name fractal operation. The fractal opera-
tions we used are illustrated in the following figure: We

2.

1.

Figure 1: Illustration of the two fractal operations.

used four lattices, two of 500×500 and two of 150× 150
with 4, 3 fractal operations on a square as boundaries,
respectively. We denote the number of adjacent vertices
of v whose unique path to the root passes through v by
predv, and name it the number of predecessors of v. Its
proven that after a sufficient times of experiments the
probability for vertex v to have i (i ∈ {0 − 3}) num-
ber of predecessors is the same as the probability pv of
having i number of sand grains. Since the number of
predecessors depends on only neighboring vertices then

if we are interested in only vertex v probabilities we can
generate only the subtrees which have the vertex v and
its neighbors. According to Wilson’s method, the sub
tree T for vertex v can be generated in the following
process: T (1)← v
T (2)← the upper adjacent vertex of v
T (3)← the left adjacent vertex of v
T (4)← the lower adjacent vertex of v
T (5)← the right adjacent vertex of v
Considering the fact that vertices whose distance is more
than 4 or 5 have constant probabilities, we calculated
the near border vertices with fare more accuracy (1.6
billion times) in comparison to further away vertices
(100 million times).

Figure 2: Illustration of the dependence of probabilities
pi from the distance from boundary. Here blue=0, or-
ange=1, green=2, red=3 is the number of predecessors.

6. CONCLUSION
As was expected the further away vertices don’t de-
pend on the distance from the border, therefore have
constant probabilities. The state is different for near
border vertices which have a logarithmic dependance
on the distance from the border. We try to find a de-
pendence between this logarithmic expression and the
dimension of fractal boundaries. Despite their compli-
cated shapes, the fractals have a very weak effect on the
probabilities. The results for all four lattices are almost
the same and furthermore we experimented with other
fractals as boundaries and the results indicate the same.
We think that considering the almost invisible effect of
2D fractals numerous experiments are needed to evalu-
ate the height probabilities. The latter is a considerable
difficulty taking into account that the size of the lattice
grows with the dimension of fractals.

7. ACKNOWLEDGEMENT
The authors are grateful to Prof. Yu.H. Shoukourian
for important discussions and critical remarks on all
stages of the work. This work was supported by the
State Committee of Science MES RA, in frame of the
research project No. SCS 13-1B170.

REFERENCES
[1] Bak P., Tang C. and Wiesenfeld K., Phys. Rev.

Lett., 59(4):381384, 1987.

[2] Poghosyan V. S., Priezzhev V. B., Ruelle P., Phys.
Rev. E, 77 041130, 2008.

[3] Priezzhev V. B., Ruelle P., Phys. Rev. E, 77
061126, 2008.

[4] Poghosyan V. S., Grigorev S. Y., Priezzhev V. B.,
Ruelle P., J. Stat. Mech., P07025, 2010.

[5] Poghosyan V. S., Priezzhev V. B., Acta Polytechn.,
51 59, 2011.

[6] Dhar D., Phys. Rev. Lett., 64 1613, 1990.

[7] Bak P., Oxford: Oxford University Press, 1997.

[8] Priezzhev V. B., J. Stat. Phys., 74 955, 1994.

[9] Mahieu S., Ruelle P., Phys. Rev. E, 64 066130, 201.

[10] G. F. Lawler, Duke Math. J., 47(3):655-693, 1980.

[11] Wilson D. B., Proc. 28th Annual ACM Symp. on
the Theory of Computing, p 296, 1996.

