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ABSTRACT 
We study the directed evolution of random networks toward 

increasing local connectivity while conserving the degrees of 

nodes using computer simulations. We show that network 

evolution under "quenched topological disorder" manifests 

itself as a cascade of transitions that result in the splitting of 

random network into a set of inherently connected subnets 

weakly coupled to one another. We interpret this phenomenon 

as the formation of clustering. 
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1. INTRODUCTION
Complex networks have garnered the attention of the research 

community due to the discovery of non-trivial topological 

features in many real networks [1, 2, 3]. Network concepts, 

models and analytic techniques have been applied in many 

different disciplines such as sociology, biology, physics, 

mathematics, and computer science [4, 5]. In addition to 

general topological characteristics such as the average degree 

of nodes, information about the structure of a complex network 

can be obtained by investigating the local topology (e.g., the 

statistics of small subgraphs) [6]. One more aspect relates to the 

directed evolution of a network to the states that differ from 

purely random networks called the Erdős-Rényi networks [7]. 

Of particular interest is the evolution of networks with 

subgraphs consisting of only a few nodes. These subgraphs 

simulate, from a physical point of view, multi-particle local 

interactions. In this case, there is competition between the 

"energy gain," which is associated with an increase in the 

number of connected subgraphs, and a loss of entropy due to 

the decreased number of ways of reaching an energy-preferred 

state. As a result, the network follows the structural 

rearrangements, which may be interpreted in terms of phase 

transitions and critical phenomena. 

An early study showed that growing networks to a maximal 

number of fully connected three-node subgraphs (cycles of 

length 3) possesses criticality similar to the first-order phase 

transition resulting in the formation of a "dense" core 

surrounded by a "vapor" of nodes [8]. This phenomenon was 

observed under conservation of global topological 

characteristics on average but not local distributions, which 

could have changed following the evolution. Tamm et al. 

(2014) recently reported that critical behavior such as a first-

order phase transition occurs even when the distribution of the 

degree of nodes is quenched and remains unchanged over the 

course of the evolution [9]. We hypothesize that, while 

networks evolve given competition between energy gain and 

entropy cost, the local topological constraints may act as 

"quenched disorder". Therefore, the network structuring other 

than the one presented in [9] may occur. In this paper, we show 

that the directed evolution under local topological constraints 

indeed leads to a cascade of critical phenomena, namely, the 

subsequent splitting of an initially homogeneous random 

network into a set of highly connected subnets associated with 

"condensed clusters." 

2. THE MODEL OF DIRECTED 

EVOLUTION OF RANDOM NETWORKS 
We consider the ER random graph model. In this model, 𝑁 

identical pairs of vertices are connected by undirected edges; 

each edge appears with an independent probability 𝑝, forming 

on average 𝑝𝐶𝑛
2 edges. The ER random graph model is given by

𝐺 = (𝑉, 𝐸), where 𝑉(𝐺) = {𝑥1, … , 𝑥𝑁} is a non-empty finite set

of vertices and 𝐸(𝐺) is a finite set of edges. The model 

possesses a symmetric adjacency matrix 𝐴 with elements 𝑎𝑖𝑗 =

1 if (𝑥𝑖 , 𝑥𝑗)  ∈ 𝐸(𝐺) and 𝑎𝑖𝑗 = 0, otherwise. The vertices of the

graph 𝐺, representing a network, are referred to as nodes, and 

the edges are referred to as links. 

Let  𝑇(𝐺) be the number of cycles of length 3 in network 𝐺. 

Now, consider the process of network evolution toward the 

growth of 𝑇(𝐺). The process of evolution is a sequence of 

transformations of graphs {𝐺 = 𝐺0, 𝐺1, 𝐺2, … 𝐺𝑘}, 𝑘 ≫ 1, i.e., a 

random process in which each successive graph is obtained 

from the previous one by switching links, which preserves the 

degrees of nodes (see, e.g., [6]). Figure 1 illustrates such 

switching. 

Figure 1. Switching of links, which preserves the degrees of nodes. 

Links 2->1, 3->4 are substituted with 1->3, 2->4, which results in the 

formation of a new 3-length cycle (2, 4, 5) 

The value of 𝑇(𝐺) may change during switching. As a result, 

we let ∆𝑖= 𝑇(𝐺𝑖) − 𝑇(𝐺𝑖−1), 1 ≤ 𝑖 ≤ 𝑘, which is a one-step

change. To accept or reject network resulting from such a 

switch, we use the Metropolis-Hastings algorithm. Namely, the 

probability 𝜔 of acceptance or rejection of a switch is 

determined as follows: 

𝜔 = {
 1 ,   𝑖𝑓 ∆𝑖≥ 0

𝑒𝜇∗∆𝑖 , 𝑖𝑓 ∆𝑖< 0
, 

where 𝜇 is the parameter of model: higher 𝜇 values correspond 

to lower probabilities that the network is accepted with a lower 

value of 𝑇(𝐺). The evolution continues until stabilization, i.e., 

until the system reaches a state in which the number of cycles 

of length 3 does not tend to change over a sufficiently long 

series of switches, 𝛷(𝐺, 𝜇), and the system only fluctuates 

around some value. It is natural to associate such a state with 

equilibrium. The evolution itself is represented by evolutionary 

trajectories, i.e., the variation of the number of cycles of length 

3 along the number of elementary switches (time). 



Below, we compare the evolutionary trajectories derived from 

one and the same initial random network but different values of 

the parameter 𝜇. We proceed from the work of Tamm et al. 

(2014) [9]; these authors demonstrated the existence of a 

critical value 𝜇 = 𝜇𝑐  at which the equilibrated amount of 𝑇(𝐺)
increases sharply. In this paper, we study the formation of 

structure over the course of evolution before and after reaching 

the critical value 𝜇 = 𝜇𝑐 . In addition, for comparison, we

reproduce the results of Park and Newman (2005) [8] for 

evolution without the degrees of nodes being conserved. In the 

last case, we realize elementary switching by removing one 

randomly selected link and forming one new one. The 

probability of acceptance or rejection of an elementary switch 

remains the same as specified above. 

To study the directed evolution of random networks with and 

without conserving the degrees of nodes, we developed a 

software system that allows us to determine the critical points 

of the phase transitions in networks of various sizes; we are 

also able to explore the topological characteristics and 

structures of the intermediate and final networks. 

3. CLUSTERING OF RANDOM 

NETWORKS THROGH DIRECTED 

EVOLUTION 
The software that we developed was used to perform 

simulations of the process described above related to the 

directed evolution of the random networks of sizes 64, 128, 256 

and 512. We also analyzed the topological properties and 

structures of these networks. Our computer experiments 

revealed that, above the critical point 𝜇 ≥ 𝜇𝑐, the evolution

with conserved node degree leads to the subsequent formation 

of a set of strongly connected components. The formation of 

components is accompanied by an increase in the average 

clustering coefficient and the average distance between nodes. 

These topological changes, in combination, unambiguously 

point to the formation of clusters, which are well visualized. 

Below, we illustrate our typical results of the splitting of an 

initially homogeneous network into clusters for a network of 

size 64. Similar results were observed for networks with 128, 

256 and 512 nodes. For comparison, we show the structure of 

networks that are formed without topological constraints, i.e., 

without conserving the degree of nodes. In all of the examples 

below, the initial networks were generated randomly with 

probability 𝑝 = 0.3 for the link formation, i.e., above the 

percolation threshold. 

3.1. Evolution with conservation of the node 

degree 
Figure 2a shows the evolutionary trajectories obtained for one 

and the same initial network 𝐺 but for different values of 𝜇 

above and below the critical point 𝜇𝑐. Note that some

trajectories possess stepwise transitions. Figure 2b shows the 

equilibrated amount of 𝑇(𝐺) as a function of 𝜇. It is easy to see 

the sharp increase in  𝑇(𝐺) close to 𝜇 = 0.5. 

Figure 2. Evolution of random network (𝑁 = 64, 𝑝 = 0.3) with a 

conserved number of node degrees. (a) – Trajectories for 𝜇 = 0.49, 

𝜇 = 0.51, 𝜇 = 0.53, 𝜇 = 0.55. The transition is at 𝜇 = 0.51 and 𝜇 =
0.53. (b) – Equilibrated amount of 𝑇(𝐺) as a function of 𝜇. 

The trajectories show that above the critical point, for instance, 

at 𝜇 = 0.53, a set of transitions occurs with an increase in the 

number of 3-node cycles. This finding is explained by the 

structure analysis of the networks generated in the course of 

evolution (Table 1). The structuring of the network above the 

critical point is related to the splitting of the network into 

strongly connected components. In the illustrated example, the 

network is first divided into two clusters, one of which is 

smaller but denser and contains nodes with the highest degrees 

(the empirical probability of hitting such nodes into the dense 

cluster exceeds 0.7). In the next stage of evolution, the denser 

cluster undergoes minor changes but the larger second cluster 

splits into two smaller ones. Additional "condensation" of 

nodes is not accompanied by the formation of new clusters. 

#1 #2 #3 #4 

(a) 

(b) 



#5 #6 #7 #8 

Table 1. Splitting of the random network into clusters given 

conservation of node degrees 

In the illustrated example, the final structure represents three 

dense, small clusters linked to each other much weaker (on the 

order of magnitude less) than within the clusters.  

In addition to the trajectories we also investigated the changes 

in the topological characteristics of the network over the course 

of the cluster formation. Below, we provide the data that 

correspond to the same evolutionary trajectory for which 

structures were visualized in Table 1. Figure 3 compares the 

change in the number of cycles of length 3 along the time with 

appropriate modifications of the average distance between the 

nodes and the clustering coefficient of the network. 

Figure 3. Comparison of different topological properties in the case of 

network evolution given conservation of node degrees. The top curves 
in both panels relate to the number of 3-nodes cycles; the bottom 

curves relate to the average clustering coefficient (Figure 3a) and the 
average path length (Figure 3b). 

It can be seen that the number of cycles of length 3 clearly 

correlates with the clustering coefficient and the average 

distance between nodes. All three characteristics behave in a 

synchronous manner. 

3.2. Evolution without conservation of the 

node degree 
For comparison, Figure 4 shows the results of the evolution of 

the same initial network 𝐺 without conservation of the node 

degree. 

Figure 4. Evolution of a random network (𝑁 = 64, 𝑝 = 0.3) without 

conservation of node degree. (a) – Trajectories for 𝜇 = 0.21, 𝜇 = 0.22, 

𝜇 = 0.23, 𝜇 = 0.24 and 𝜇 = 0.25. (b) – The equilibrated amount of 

𝑇(𝐺) as a function of 𝜇. The critical point is close to 𝜇 = 0.23. 

Here we recover a significantly different picture. The structures 

presented in Table 2 illustrate the fact that there is always one 

strongly connected component surrounded by a "vapor" of 

nodes. 

#1 #2 #3 #4 

Table 2. Typical picture of the network condensation if the node degree 
is not conserved.  

The following data correspond to the same evolutionary 

trajectory for which structures were visualized in Table 2. 

Figure 5 compares the changes in the number of cycles of 

(a) 

(b) 

(a) 

(b) 



length 3 as a function of time with modifications to the average 

distance between the nodes and the clustering coefficient of the 

network. 

Figure 5. Comparison of different topological properties in the case of 
network evolution without conservation of the node degree. The top 

curves in both panels represent the number of 3-nodes cycles; the 
bottom curves relate to the average clustering coefficient (Figure 5a) 

and the average path length (Figure 5b). 

In this case, an increase in the average distance between nodes 

is not observed. 

4. CONCLUSION
Our computer simulation (with developed software) studies of 

the evolution of networks with quenched topological disorder 

have shown that such evolution can be accompanied by the 

formation of internally connected components such as 

structural or functional modules. Our observations are able to 

shed light on the inhomogeneity in natural networks, which 

derives from selection or directed evolution. 
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