Experience in Building Virtual Private Supercomputer

Vladimir Korkhov, Ivan Gankevich,
Alexander Degtyarev, Alexander Bogdanov

St. Petersburg State University, Russia

e-mail: vladimir@csa.ru, igankevich@ya.ru,
deg@csa.ru, bogdanov@csa.ru

ABSTRACT

Efficient distribution of high performance computing re-
sources according to actual application needs has been a
major research topic since high-performance computing
(HPC) technologies became widely introduced. At the
same time, comfortable and transparent access to these
resources was a key user requirement. In this paper we
discuss approaches to build a virtual private supercomu-
puter (VPS), a virtual computing environment tailored
specifically for a target user with a particular target ap-
plication. Virtualization is one of the cornerstone tech-
nologies that helps shaping resources to what is needed
by actual users by providing as much as needed when
it is needed. However, new issues arise when working
with large-scale applications that require large amounts
of resources working together. We describe and evalu-
ate possibilities to create the VPS based on light-weight
virtualization technologies, and analyze the efficiency of
our approach compared to traditional methods of HPC
resource management.

Keywords
Virtual cluster, application container, job scheduling,
virtual network, high-performance computing

1. INTRODUCTION

Virtualization refers to the act of creating a virtual ver-
sion of an object, including but not limited to a virtual
computer hardware platform, operating system (OS),
storage device, or computer network resources [3]. It
can be divided onto several types, and each one has
its own pros and cons. Generally, hardware virtualiza-
tion refers to abstraction of functionalities from phys-
ical devices. Nowadays, on modern multicore systems
with powerful hardware it is possible to run several vir-
tual guest operating systems on a single physical node.
In a usual computer system, a single operating system
uses all available hardware resources (CPU, RAM, etc),
whilst virtualized system can use a special layer that
spreads low-level resources to several systems or appli-
cations; this layer looks like a real machine for launched
applications.

Virtualization technologies facilitate creation of a vir-
tual supercomputer or virtual clusters that are adapted
to problem being solved and help to manage processes
running on these clusters (see Figure 1). The work de-
scribed in this paper continues and summarizes our ear-
lier research presented in [4, 6, 7, 8, 9].

Vladimir Gaiduchok, Nabil Ahmed, Amissi

Virtual clusters

« Collection of virtual machines working together to solve a
computational problem

« Can be configured by advanced users; they know exactly
what they want

Host 1 Host 2 Host 3 Host 4

ver | [N O || B
v || e
=~

[v | vc3‘

<
<

[vm |

irtual Priyate Using Tﬂuahza(w d Cloud Technologigs, ICCSA 14, 02.7.2014

1-Gapkevich et al. G
F 1gu1e'é T A testbed example with a set of virtua
clusters over several physical resources.

In our experience, the main benefit of virtualization for
high-performance computing is structural decomposi-
tion of a distributed system into unified entities — vir-
tual machines or application containers — which simpli-
fies maintenance of the system. A new entity can be
created for each new version of the application with op-
timal configuration and set of libraries, so that multiple
versions of the same software may co-exist and run on
the same physical cluster. Entities can be copied or ef-
ficiently shared between different physical machines to
create private cluster for each application run.

In our experience, virtualization sometimes gives in-
crease in application performance, however, it is not
easy achievable. Allocating a separate container for
each application allows compiling it for hybrid GPGPU
systems which may or may not improve performance of
an application. However, such optimizations are pos-
sible even without application containers. Full virtual-
ization gives an option of choosing the right operating
system for an application, but gives constant decrease
in performance due to overheads, which is not tolerable
for large-scale parallel applications.

Thus, for high-performance computing virtualization is
a tool that helps manage parallel and distributed appli-
cations running on physical cluster. It allows different
versions of the same libraries and operating systems to
co-exist and to be used as environments for running ap-
plications that depend on them.

In this work we evaluate the capabilities given by differ-
ent approaches and virtualization technologies to build a
computational environment with configurable computa-
tion (CPU, memory) and network (latency, bandwidth)
characteristics, which we call Virtual Private Supercom-
puter (VPS) [7]. Such configuration enables flexible par-
titioning of available physical resources between a num-
ber of concurrent applications utilizing a single infras-
tructure. Depending on application requirements and
priorities of execution each application can get a cus-

tomized virtual environment with as much resources as
it needs or is allowed to use.

Section 2 gives an overview of related work in the area of
virtualization applied to high-performance computing.
Section 3 presents the approaches to use light-weight
virtualization to build the virtual computing environ-
ment along with some results of its experimental evalu-
ation. Section 4 discusses the experience and observed
experimental results; and Section 5 concludes the paper.

2. RELATED WORK

Research works on the subject of virtual clusters can
be divided into two broad groups: works dealing with
provisioning and deploying virtual clusters in high per-
formance environment or GRID and works dealing with
overheads of virtualization. Works from the first group
typically assume that virtualization overheads are low
and acceptable in high performance computing, and
works from the second group in general assume that
virtualization has some benefits for high performance
computing.

In [5] authors evaluate overheads of the system for on-
line virtual cluster provisioning (based on QEMU/KVM)
and different resource mapping strategies used in this
system and show that the main source of deploying over-
head is network transfer of virtual machine images. To
reduce it they use different caching techniques to reuse
already transferred images as well as multicast file trans-
fer to increase network throughput. Simultaneous use of
caching and multicasting is concluded to be an efficient
way to reduce overhead of virtual machine provisioning.

In [10] authors evaluate general overheads of Xen par-
avirtualization compared to fully virtualized and phys-
ical machines using HPCC benchmarking suite. They
conclude that an acceptable level of overheads can be
achieved only with paravirtualization due to its efficient
inter domain communication (bypassing dom0 kernel)
and absence of high L2 cache miss rate when running
MPI programs which is common to fully virtualized
guest machines.

In contrast to these two works the main principles of
our approach can be summarized as follows. Do not
use full or paravirtualization of the whole machine but
use virtualization of selected components so that over-
heads occur only when they are unavoidable (i.e. do not
virtualize processor). Do not transfer opaque file sys-
tem images but mount standard file systems over the
network so that only minimal transfer overhead can oc-
cur. Finally, amend standard task schedulers to work
with virtual clusters so that no programming is needed
to distribute the load efficiently. These principles are
paramount to make virtualization light-weight and fast.

3. EXPERIENCE WITH APPLICATION
CONTAINERS

Only light-weight virtualization technologies can be used
to build efficient virtual clusters for large-scale prob-
lems. This stems from the fact that on large scale no
service overhead is acceptable if it scales with the num-
ber of nodes. In case of virtual clusters, scalable over-
head comes from processor virtualization which means
that no para- and fully-virtualized machines are suit-
able for large virtual clusters. This leaves only applica-
tion container technologies for investigation. The other

challenge is to make dynamic creation and deletion of
virtual clusters take constant time.

3.1 System configuration

Test system comprises many standard components which
are common in high performance computing: distributed
parallel file system which stores home directories with
experiment’s input and output data; cluster resource
scheduler which allocates resources for jobs and client
programs to pre- and post-process data; non-standard
component is network-attached storage exporting con-
tainer’s root files systems as directories. Linux Con-
tainer technology (LXC) is used to provide container-
ization, GlusterF'S is used to provide parallel file system
and TORQUE to provide task scheduling. The most re-
cent CentOS Linux 7 is chosen to provide stable version
of LXC (greater than 1.0) and version of kernel which
supports all container features. Due to limited number
of nodes each of them is chosen to be both compute
and storage node and every file in parallel file system is
stored on exactly two nodes. Detailed hardware char-
acteristics and software version numbers are listed in

Table 1.

Table 1. Hardware and software components of the system.

Component Details

CPU model Intel Xeon E5440
CPU clock rate (GHz) 2.83

No. of cores per CPU 4

No. of CPUs per node 2

RAM size (GB) 4

Disk model ST3250310NS
Disk speed (rpm) 7200

No. of nodes 12
Interconnect speed (Gbps) 1

Operating system CentOS 7
Kernel version 3.10

LXC version 1.0.5
GlusterF'S version 3.5.1
TORQUE version 5.0.0
OpenMPI version 1.6.4

IMB version 4.0
OpenFOAM version 2.3.0

To summarize, only standard Linux tools are used to
build the system: there are no opaque virtual machines
images, no sophisticated full virtualization appliances
and no heavy-weight cloud computing stacks in this con-
figuration.

3.2 Evaluation

To test the resulting configuration OpenMPI and Intel
MPI Benchmarks (IMB) were used to measure network
throughput and OpenFOAM was used to measure over-
all performance on a real-world application.

The first experiment was to create virtual cluster, launch
an empty (with /bin/true as an executable file) MPI
program and compare execution time to ordinary phys-
ical cluster. To set this experiment up in the container
the same operating system and version of OpenMPI as
in the host machine was installed. No network virtual-
ization was used, each run was repeated several times
and the average was displayed on the graph (Figure 2).
The results show that a constant overhead of 1.5 second

Time [s]

1 8 162432404856 64728088 96

No. of cores

Figure 2: Comparison of LXC and physical clus-
ter performance running empty MPI program.

\\\\\\' mpirun, destroy 7//// create

Y

Time [s]

S, N W A
|

VS S
T rrrrr1r1r 1T T

1 8 1624324048 56 64 72 80 88 96

No. of cores

Figure 3. Breakdown of LXC empty MPI program run.

is added to every LXC run after the 8" core: one sec-
ond is attributed to the absence of cache inside container
with SSH configuration files, key files and libraries in it
and other half of the second is attributed to the cre-
ation of containers as shown in Figure 3. The jump
after the 8" core marks bounds of a single machine
which means using network for communication rather
than shared memory. The creation of containers is fully
parallel task and takes approximately the same time
to complete for different number of nodes. Overhead
of destroying containers was found to be negligible and
was combined with mpirun time. So, usage of Linux
containers adds some constant overhead to the launch-
ing of parallel task depending on system’s configuration
which is split between creation of containers and filling
the file cache.

Another experiment dealt with real-world application
performance and for this role the OpenFOAM was cho-
sen as the complex parallel task involving large amount
of network communication, disk I/O and high CPU
load. The dam break RAS case was run with differ-
ent number of cores (total number of cores is the square
of number of cores per node) and different LXC network
types and the average of multiple runs was displayed on
the graph (Figure 4). Measurements for 4 and 9 cores
were discarded because there is a considerable variation
of execution time for these numbers on physical ma-
chines. From the graph it can be seen that low perfor-
mance of virtual ethernet decreased final performance of
OpenFOAM by approximately 5-10% whereas macvlan
and none performance is close to the performance of
physical cluster (Figure 5). Thus, the choice of net-
work type is the main factor affecting performance of
parallel applications running on virtual clusters and its
overhead can be eliminated by using macvlan network

120 —

(<5}
g
&= —-—- NOLXC ===--- veth
60 -|{ = none = = = macvlan
[[[|
16 25 36 49 64
No. of cores

Figure 4: Average performance of OpenFOAM
with different LXC network types.

0—
___/\
— -5 ST ---~--~
) ."s~ e
= 45 4 - - - macvlan .
------ veth ...
-20 | | | |
16 25 36 49 64
No. of cores
Figure 5: Difference of OpenFOAM perfor-

mance on physical and virtual clusters. Negative
numbers show slowdown of virtual cluster.

type or by not using network virtualization at all. More
experimental results are presented in [6].

To summarize, there are two main types of overheads
when using virtual cluster: creation overhead which is
constant and small compared to average time of a typ-
ical parallel job and network overhead which can be
eliminated by not using network virtualization at all.

3.3 Application containers with Docker

The next step in using containers for building virtual
cluster is applying various automation and management
tools that help to ease deployment and handling of vir-
tual clusters. We investigated capabilities provided by
several modern tools (Docker, Mesos, Mininet) to model
and build virtualized computational infrastructure, in-
vestigated configuration management in the integrated
environment and evaluated performance of the infras-
tructure tuned to a particular test application. Docker —
a lightweight and powerful open source container virtu-
alization technology which we use to manage containers
— has a resource management system available so it is
possible to test different configurations: from ”slow net-
work and slow CPUs” to ”fast network and fast CPUs”.

Even though container-based virtualization is easy to
run and use, it’s not often easy and user-friendly to
scale configuration or to limit resources. This is where
Apache Mesos [1] and Mesosphere Marathon [2] were
used. Apache Mesos abstracts CPU, memory, storage,
and other compute resources away from machines (phys-
ical or virtual), enabling fault-tolerant and elastic dis-
tributed systems to easily be built and run effectively.
At a high level Mesos is a cluster management platform

2000
1800
1600
1400

: I i I
o I - ' I
BT CG EP FT LU MG SP

Figure 6: Performance of different tests from
NAS Parallel Benchmarks suite on different con-
figurations

W
mA

Mop/s, higher is better

=
8 &8 3 8 8
S & & &6 o

that combines servers into a shared pool from which
applications or frameworks like Hadoop, Jenkins, Cas-
sandra, ElasticSearch, and others can draw. Marathon
is a Mesos framework for long-running services such as
web applications, long computations and so on.

Figure 6 shows the experimental results for execution
of NAS Parallel Benchmarks (NPB) suite on different
configurations of virtual testbed (Class W: workstation
size; Classes A, B: standard test problems, 4X size
increase going from one class to the next). With NPB
results are also very different, everything depends on
benchmark type. For example, for SP test smaller size
system of nonlinear PDEs had better Mop/s than for
bigger size. However, for lower matrices sizes in LU test
results are worse than for bigger matrices.

4. DISCUSSION

Light-weight container-based virtualization is the most
promising technology for using as an enabling part of
the virtual supercomputer concept [7, 8] to ensure proper
and efficient distribution of resources between several
applications. Knowing the application demands in ad-
vance we can create appropriate infrastructure configu-
ration giving just as much resources as needed to each
particular instance of a virtual supercomputer running a
particular application. In such a way, free resources can
be controlled and granted to other applications with-
out negative effect on current executions with minimal
overhead.

S. CONCLUSION

Presented approach for creating virtual clusters from
Linux containers was found to be efficient and its per-
formance comparable to ordinary physical cluster. From
the point of view of system administrator, storing each
HPC application in its own container makes version-
ing and dependencies control easy manageable and their
configuration does not interfere with the configuration
of host machines and other containers. Usage of stan-
dard virtualization technologies can improve overall be-
havior of a distributed system and adapt it to prob-
lems being solved. In that way virtual supercomputer
can help people efficiently run applications and focus
on domain-specific problems rather than on underlying
computer architecture and placement of tasks.

6. ACKNOWLEDGEMENT

The research presented in this paper was carried out us-
ing computational resources of Resource Center “Com-
puter Centre of Saint-Petersburg State University” with

support of grants of Russian Foundation for Basic Re-
search (project no. 13-07-00747) and Saint Petersburg
State University (projects 9.38.674.2013, 0.37.155.2014).

REFERENCES

[1] Apache Mesos. Available online:
http://mesos.apache.org/. Retrieved:
2015-07-04.

[2] Mesosphere Marathon. Available online:
https://mesosphere.github.io/marathon/.
Retrieved: 2015-07-04.

[3] Virtualisation in Wikipedia. Available online:
http:
//en.wikipedia.org/wiki/Virtualization.
Retrieved: 2015-07-04.

[4] A.V. Bogdanov, A.B. Degtyarev, I.G. Gankevich,
V.Yu. Gayduchok, and V. I. Zolotarev. Virtual
workspace as a basis of supercomputer center. In
Proceedings of 5™ International Conference on
Distributed Computing and Grid-Technologies in
Science and Education, pages 60—-66, 2012.

[5] Yang Chen, Tianyu Wo, and Jianxin Li. An
efficient resource management system for on-line
virtual cluster provision. In Proc. of International
Conference on Cloud Computing (CLOUD), pages
72-79. IEEE, 2009.

[6] 1. Gankevich, S. Balyan, S. Abrahamyan, and
V. Korkhov. Applications of on-demand virtual
clusters to high performance computing.
Computer Research and Modelling, 7(3):504-509,
2015.

[7] 1. Gankevich, V. Gaiduchok, D. Gushchanskiy,
Y. Tipikin, V. Korkhov, A. Degtyarev,
A. Bogdanov, and V. Zolotarev. Virtual private
supercomputer: Design and evaluation. In CSIT
2013 - 9th International Conference on Computer
Science and Information Technologies (CSIT),
Rewvised Selected Papers, DOI:
10.1109/CS1Technol.2013.6710358, 2013.

[8] I. Gankevich, V. Korkhov, S. Balyan,
V. Gaiduchok, D. Gushchanskiy, Y. Tipikin,
A. Degtyarev, and A. Bogdanov. Constructing
virtual private supercomputer using virtualization
and cloud technologies. In Proceedings of
International Conference on Computational
Science and Its Applications (ICCSA 201}).
Lecture Notes in Computer Science, volume 8584,
pages 341-354, 2014.

[9] V. Korkhov, S. Kobyshev, and A. Krosheninnikov.
Flexible configuration of application-centric
virtualized computing infrastructure. In
Proceedings of International Conference on
Computational Science and Its Applications
(ICCSA 2015). Lecture Notes in Computer
Science, volume 9158, pages 342-353, 2015.

[10] Kejiang Ye, Xiaohong Jiang, Siding Chen, Dawei
Huang, and Bei Wang. Analyzing and modeling
the performance in Xen-based virtual cluster
environment. In Proc. of the 12" International
Conference on High Performance Computing and
Communications (HPCC), pages 273-280. IEEE,
2010.

