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ABSTRACT 
This paper provides a method of mathematical representation 

of the traffic flow of network states. Anomalous behavior in 

this model is represented as a point, not grouped in clusters 

allocated by the "alpha-stream" process 
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1. INTRODUCTION

Network attacks becoming a major threat on nations, 

governmental institutions, critical infrastructures and 

business organisations. Some attacks are focused on 

exploiting software vulnerabilities to implement denial of 

service attacks, damage or steal important data, other use a 

large number of infected machines to implement denial-of-

service attacks. In this paper we are focusing on detecting 

network attacks by detecting the anomalies in network traffic 

flow data and anomalous behaviour of the network 

applications. The goal is to detect the beginning of the attack 

in a real-time and to detect when the system is returned back 

to the normal state. In this paper we are not focusing on the 

problem of identifying the source of the attack and the attack 

mitigation. 

The network traffic flow data can be represented by a set of 

network-level metrics (amount of packets for different 

protocols, inbound and outbound traffic, etc.) and 

application-level metrics (like the response duration 

histogram for web server). These metrics are collected by the 

traffic analyser at fixed rate. The goal for the state analyser is 

to detect anomalous network and/or application behaviour 

basing on these metrics. 

The input data for the analyser is statistics matrix that 

contains a single row for every traffic time slice. Each row 

contains the network-level and application-level features that 

come from different scales. This matrix is the input for the 

intrusion detection processes (both training and detection 

steps). 

Our method has two sequential steps. Study and analysis of 

the behaviour of networking datasets and projection of data 

onto a lower dimensional space - training step. This is done 

once and updated as the behaviour of the training set 

changes. During this step we can handle corrupted training 

sets. 

The output from the training step enables online detection of 

anomalies to which we apply automatic tools that enable 

real-time detection of problems. Each newly arrived 

datapoint is classified as normal or abnormal. 

Analysis of the indicators of network traffic reveals represent 

normal behaviour as statistically dependent set, grouped in 

clusters after reduced dimensionality operation, against 

which the representation of anomalies.  Anomalies is not 

statistical connected with the basic set of states. They appear 

as distant from the main cluster points. 

2. THE TRAFFIC ANALYSER

The traffic analyser processes the network packets and 

summarises the network-level statistics. These metrics 

include: tcp flags usage; number of control tcp packets 

(packets without payload); number of data tcp packets 

(packets with payload); number of source (client) packets; 

number of source control packets; number of source data 

packets; number of source data bytes; number of destination 

(server) packets; number of destination control packets; 

number of destination data packets; number of destination 

data bytes. 

TCP-connections could be reassembled to estimate 

application-level metrics. Another sources of application-

level metrics are the log files from applications (like access-

logs on HTTP web server). The analyser processes the 

application logs to collect and summarise application level 

metrics (like total amount or requests, total amount of errors, 

histogram of the response times, histogram of error codes, 

etc). These metrics can be extended by adding other sources 

of behaviour metrics, like e-mail server logs, database server 

logs, cpu/memory metrics. We measure, receive and sense 

many parameters (features) at every pre-determined time 

interval – forming high dimensional data. The challenge are: 

How to cluster and segment high-dimensional data? How to 

find distances in high-dimensional data? How to find 

deviations from normal behaviour? 

Challenge: How to process an “ocean” of data in order to 

find abnormal patterns in the data? How to fuse data from 

different sources (sensors) to find correlations and 

anomalies?  How to find distances in high-dimensional data? 

They do not exist. How can we determine whether a point 

belongs to a cluster/segment or not? The goal is to identify 

points that deviate from normal behaviour which reside in 

the cluster/segment. How we treat huge high dimensional 

data that is dynamically and constantly changes? How can 

we model the high dimensional data to find deviations from 

normal behaviour?   

3. DETAILS
The traffic state at each time point can be represented by a 

vector, as shown in Figure1 
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Figure1: traffic behavior in a single day, represented by 

several factors. 

Thus, the traffic can be modeled as a random process related 

to the vector X (t), where t is time. Define X={Xt}t the 

dataset of all traffic states X (t), where for each t X (t) 

belongs to n-dimensional space Rn.  The first goal is: 

construct such mapping  

Such that vectors with regular behavior will be displayed in 

the compact cluster. The Diffusion Maps (DM) [1] is the 

manifold learning scheme. DM embeds high dimensional 

data into an Euclidean space of substantially smaller 

dimension while preserving the geometry of the data set. The 

global geometry is preserved by maintaining the local 

neighborhood geometry at each point in the data set. DM 

uses a random walk distance that is more robust to noise 

since it takes into account all the paths between a pair of 

points. Furthermore, DM can provide parameterization of the 

data when only a point-wise similarity matrix is available. 

This may occur either when there is no access to the original 

data or when the original data consists of abstract objects. 

The general idea of constructing DM is the following: 

a. Building a graph G on X with a weight function w

that corresponds to the local point-wise similarity 

between the points in X. 

b. Construction of a random walk on the graph G via a

Markov transition matrix P which derived from W. 

c. Spectral decomposition of P.

By designing a local geometry that reflects the needed 

quantities, it is possible to construct a diffusion operator with 

spectral decomposition that enables the embedding of X into 

a space of substantially lower dimension. The Euclidean 

distance between a pair of points in this space is equal to the 

random walk distance between the corresponding pair of 

points in the original space. We shall use the DM for 

dimensionality reduction and data clustering. 

For that purpose the mapping  is 

constructed in [1]. Each vector x is represented via the 

relationship with other vector from the dataset X. If 

, then and 

 measures the relationship between  and . The 

diffusion distance was introduced in [1] and is equal to 

     

 

    

Closed data-points satisfy  while the remote data 

points satisfy . 

Build the Markov matrix P, by normalizing 

     and 

         

Then we find eigenvectors         and eigenvalues of the 

equation

The (i,j) element of Pt gives the probability of going 

from node i to node j in t steps. 

Apply embedding in the low-dimensional space (diffusion 

map)  

Spectral fall-off contribute to dimensionality reduction 

At  t>1 

For large t, large–scale structures in data can be 

captured in fewer diffusion coordinates. 

According [1], the diffusion distance (the probability 

of transition from one vertex of the Markov chain G to other) 

is equal to the distance in the Euclidean metric after 

diffusion mapping 

 

 

Figure 2. It is easy to see that the map has the following 

properties: 

• The map represents the data in a space of dimension k.

• The map is not linear.

Figure 3. The figure illustrates the effectiveness of the 

separation of mixed known clusters via “diffusion maps”.  If 

the generated data is represented as two interlocking rings 

(marked different shades of blue), no any linear methods is 

able to divide it. Nevertheless, a random walk on the graph 

represented by these rings, have ability to divide the classes. 

The probability remain inside the same ring by random walk 

is greater than the probability of jumping from one ring to 

another.  The distance between the images of points is equal 
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to the diffuse distance, that is, the probability to get from 

point x to point y via random walk on the graph for the time 

t.  

For diffusion representation of traffic behavior during the 

day, we use the next kernel function for calculate weight of 

the relationship between datapoints 

Where D is the length (in seconds) of the day.  So, the 

diffusion geometry is oriented around a smooth parametric 

curve as shown in Figure4.  

Figure4. The curve represents one day of traffic activities. 

After the diffusion map is constructed for the vectors from 

the training database, it should be extended to arbitrary 

vector. 

Let                  .  Construct the relationship vector 

The extension of diffusion map to x is: 

Once X is mapped - extension of       to          ,  using

representatives from X (sampling). 

Let E(j) be the approximating curve for manifold in diffusion 

map represented X  and              .

Define homotopy G(x) by nest expression: 

                           (1.1) 

Figure 5. Application homotopy for testing data              (red 

color) 

This algorithm represents the data   so that the vectors with 

regular behavior are grouped into a Gaussian cluster, 

whereas abnormal points are located at a considerable 

distance from the Gaussian.  

After this simple algorithm "Alpha-stream" easily determine 

abnormal points. 

Description of "Alpha-stream” algorithm. 

The aim is to build an algorithm capable for classifcation of 

background and anomalies. 

Let X={x1,…xN} be dataset after “homotopy processing” 

(1.1) described above. Define measure relationships between 

datapoints 

Where dij be distance between xi and xj and σ be a parameter 

of the algorithm. Define diagonal matrix D with elements 

The “Laplassian" matrix is the L = D-W. The segmentation 

problem is to find the function  

such that if α(xi) = 1 then the datapoint  xi belongs to 

background. Otherwise, if α (xi) = 0 then the datapoint xi 

belongs to foreground.  The distribution of α measures the 

probability of being an anomaly. We will look for the 

function α by minimizing the energy functional. 

The form of the energy functional is as follow 

Where       be the characteristic function of the set, defined 

as a rough estimate of the background: 
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The first member of the functional declines to take the alpha 

value of 1 on the set Θ. The second term of the functional 

calls alpha to change in places of small   relationship 

between the elements Wij. 

We can write energy functional in other form 

 We use gradient descent method to maximize the functional. 

And we have the next iterative process to get distribution of 

α: 

                                        

                                     

Where the initial approximation step for α is random uniform 

distribution. 

4. TEST
During research 4 domains from database were tested. 

Anomalies were successfully detected by 95%. Example 

anomaly detection is shown in Figure 6. 

Figure6. Up: traffic behavior in a single day, represented by 

several factors. Down: red points represent the anomaly 

activities on traffic. 

Comparison of the   obtained present method with the 

projection on the PCA we afford in the form of confusion 

matrix 

Column1 anomalies background 

anomalies 0,95 0,05 

background 0,03 0,97 

Table 1: distribution of the “false-positive” and “true-

negative” for the result of presented algorithm. 

Column1 anomalies background 

anomalies 0,63 0,37 

background 0,29 0,71 
Table 2: distribution of the “false-positive” and “true-

negative” for the result of projection on PCA. 
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