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ABSTRACT 
A vertex of degree one in a tree is called an end vertex and a 
vertex of degree at least three is called a branch vertex. For a 

graph 𝐺, let 𝜎2  be the minimum degree sum of two 

nonadjacent vertices in 𝐺. We consider three graph 
(spanning tree) problems arising in the context of optical and 

centralized terminal networks: finding a spanning tree of 𝐺: 
(i) with the minimum number of end vertices, (ii) with the 

minimum number of branch vertices and (iii) with the 

minimum degree sum of the branch vertices, motivated by 

network design problems where junctions are significantly 
more expensive than simple end- or through-nodes, and are 

thus to be avoided. We consider:  ∗  connected graphs on 𝑛 

vertices such that 𝜎2 ≥ 𝑛− 𝑘 +1 for some positive integer

𝑘. In 1976, it was proved (by the author) that every graph 

satisfying  ∗  has a spanning tree with at most 𝑘 end 

vertices. In this paper we first show that every graph 

satisfying  ∗  has a spanning tree with at most 𝑘 + 1 branch 
and end vertices altogether. Next, we show that every graph 

satisfying  ∗  has a spanning tree with at most  𝑘 − 1 /2 
branch vertices. Finally, we show that every graph satisfying 

∗  has a spanning tree with at most 
3

2
 𝑘 − 1  degree sum of 

branch vertices. All results are sharp. 
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1. INTRODUCTION
We consider only finite undirected graphs without loops or 

multiple edges. The set of vertices of a graph 𝐺 is denoted by 

𝑉 𝐺 .  A good reference for any undefined terms is [1]. 

For a graph 𝐺, we use 𝑛 and 𝛼 to denote the order (the 

number of vertices) and the independence number of 𝐺, 
respectively.  If 𝛼 ≥ 𝑘 for some integer 𝑘, let 𝜎𝑘  be the

minimum degree sum of an independent set of 𝑘 vertices; 

otherwise we let 𝜎𝑘 =∞ . We use 𝑑 𝑣  to denote the number

of neighbors of a vertex 𝑣 in 𝐺, called the degree of 𝑣 in 𝐺. 

A graph 𝐺 is Hamiltonian if it contains a Hamilton cycle, i.e. 

a cycle containing every vertex of 𝐺. 

A vertex of degree one is called an end vertex (a leaf). The 

set of end vertices of 𝐺 is denoted by 𝐸𝑛𝑑 𝐺 . A branch 
vertex of a tree is a vertex of degree at least three. The set of 

branch vertices of a tree 𝑇 will be denoted by 𝐵 𝑇 . For a 

positive integer 𝑘, a tree 𝑇 is said to be a 𝑘 −ended tree if 
 𝐸𝑛𝑑 𝑇  ≤ 𝑘. A Hamilton path is a spanning 2-ended tree. 
A Hamilton cycle can be interpreted as a spanning 1-ended 

tree. 

We begin with two famous results on Hamilton paths due to 

Ore [8] and Chvátal and  Erdös [3].  

Theorem A [8]. Every graph with 𝜎2 ≥ 𝑛 − 1 has a
Hamilton path. 

Theorem B [3]. Every 𝑠 −connected  𝑠 ≥ 1  graph with 

𝛼 ≤ 𝑠 +1 has a Hamilton path.  

A Hamilton path can be regarded as a spanning tree with 

maximum degree two, a spanning tree with exactly two 
leaves, or a spanning tree with no branch vertex. Therefore, 

as one of generalized problems of a Hamilton path problem, 

it is natural to look for conditions which ensure the existence 

of a spanning tree with bounded maximum degree, few 

leaves or few branch vertices motivated from optimization 
aspects with various applications.  

In this paper we consider tree problems arising in the context 

of optical and centralized terminal networks: (i) finding a 

spanning tree of G with the minimum number of end 
vertices, (ii) finding a spanning tree with the minimum 

number of branch vertices and (iii) finding a spanning tree of 

G such that the degree sum of the branch vertices is 

minimized, motivated by network design problems where 

junctions are significantly more expensive than simple end- 
or through-nodes, and are thus to be avoided.  

All these problems are NP-hard because they contain the 

Hamilton path problem as a particular case. 

The constraint on the number of end vertices arises because 

the software and hardware associated to each terminal differs  

accordingly with its position in the tree. Usually, the 

software and hardware associated to a "degree-l" terminal is  

cheaper than the software and hardware used in the 

remaining terminals because for any  intermediate terminal 𝑗 
one needs to check if the arrival message is destined to that 

node or to any other node located after node 𝑗. As a 
consequence, that particular terminal needs software and 

hardware for message routing. On the other hand, such 

equipment is not needed in "degree-l" terminals. Assuming 

that the hardware and software for message routing in the  

nodes is already available, the above discussion motivates a 
constraint stating that a tree solution has to contain exactly a  

certain number of "degree-l" terminals.  

A different situation, resulting from a new technology 

allowing a switch to replicate the signal by splitting light. A 
light-tree connects one node to a set of other nodes in the 

network - allowing multicast communication from the source 

to a set of destinations (including the possibility of the set of 

destinations consisting of all other nodes). The switches 

which correspond to the nodes of degree greater than two 
have to be able to split light (except for the source of the 

multicast, which can transmit to any number of neighbors). 

Typical optical networks will have a limited number of these 

more sophisticated switches, and one has to position them in 

such a way that all possible multicasts can be performed. 



Thus, we are led to the problem of finding spanning trees  

with as few branch vertices as possible. 

2. RESULTS
In 1971, Las Vergnas [6] gave a degree condition that 

guarantees that any forest in 𝐺 of limited size and with a 
limited number of end vertices can be extended to a spanning 

tree of 𝐺 with a limited number of end vertices in an 
appropriate sense. This result implies as a corollary a degree 

sum condition for the existence of a tree with at most 𝑘 

leaves including Theorem A as a special case for 𝑘 = 2.   

Theorem C [2], [6], [7]. Let 𝐺 be a connected graph with 

𝜎2 ≥ 𝑛 − 𝑘+ 1 for some positive integer 𝑘. Then 𝐺 has a

spanning 𝑘 −ended tree.  

However, Theorem C was first openly formulated and 

proved in 1976 by the author [7]. Later, it was reproved in 

1998 by Broersma and Tuinstra [2]. 

Win [9] obtained a generalization of Theorem B.  

Theorem D [9]. Let 𝐺 be a 𝑠 −connected graph with 

𝛼 ≤ 𝑠 + 𝑘 − 1 for some integer 𝑘 ≥ 2. Then 𝐺 has a 

spanning 𝑘 −ended tree.  

One of the interests in the existence of spanning trees with 

bounded number of branch vertices arises  in the realm of 

multicasting in optical networks. 

Gargano, Hammar, Hell, Stacho and Vaccaro [5] proved the 

following.  

Theorem E [5]. Every connected graph with 𝜎3 ≥ 𝑛 − 1 has
a spanning tree with at most one branch vertex.  

Flandrin et al. [4] posed the following conjecture. 

Conjecture A [4]. If 𝐺 is a connected graph with 𝜎𝑘+3 ≥
𝑛 −𝑘 for some positive integer 𝑘, then 𝐺 has a spanning tree 

with at most 𝑘 branch vertices. 

In this note we present a sharp Ore-type condition for the 

existence of spanning trees in connected graphs with 

bounded total number of branch and end vertices. This 
improves Theorem C by incorporating the number of branch 

vertices as a parameter.  

Theorem 1. Let 𝐺 be a connected graph of order 𝑛. If 

𝜎2 ≥ 𝑛 − 𝑘+ 1 for some positive integer 𝑘, then 𝐺 has a

spanning tree 𝑇 with at most 𝑘 −  𝐵 𝑇  + 1 end vertices. 

Let 𝐺 be the complete bipartite graph 𝐾𝛿 ,𝛿+𝑘−1 of order

𝑛 = 2𝛿+ 𝑘 − 1 and minimum degree 𝛿, where 𝑘 ≥ 3. 
Clearly, 𝜎2 𝐺 = 2𝛿 = 𝑛 −𝑘 + 1. By Theorem 1, 𝐺 has a

spanning tree 𝑇 with  𝐸𝑛𝑑 𝑇  ≤ 𝑘 − 𝑏+ 1. Observing that 

𝑇 is not  𝑘 − 1 −ended, that is  𝐸𝑛𝑑 𝑇  ≥ 𝑘, we have 

𝑏 ≤ 1. On the other hand, we have 𝑏 ≥ 1, since  𝐸𝑛𝑑 𝑇  ≥
𝑘 ≥ 3, which implies 𝑏 = 1. This means that 𝑇 is not  
 𝑘 −𝑏 −ended and consequently, Theorem 1 is sharp for 

each 𝑘 ≥ 3. 

The next result follows from Theorem 1 providing a sharp 

Ore-type condition for the existence of spanning trees in 

connected graphs with few branch vertices. 

Theorem 2. Let 𝐺 be a connected graph of order 𝑛. If 

𝜎2 ≥ 𝑛 − 𝑘+ 1 for some positive integer 𝑘, then 𝐺 has a

spanning tree with at most  𝑘 − 1 /2 branch vertices.  

The third result provides an Ore-type condition for the 

existence of spanning trees in connected graphs with 

bounded degree sum of the branch vertices.  

Theorem 3. Let 𝐺 be a connected graph of order 𝑛. If 

𝜎2 ≥ 𝑛 − 𝑘+ 1 for some positive integer 𝑘, then 𝐺 has a

spanning tree with at most 
3

2
 𝑘 − 1  degree sum of the 

branch vertices.  

Let 𝐺 be a graph (tree) obtained from the path 

𝑣0𝑣1 …𝑣𝑏𝑣𝑏+1 by adding new vertices 𝑢1,… , 𝑢𝑏  and the

edges 𝑢𝑖𝑣𝑖  𝑖 = 1,… , 𝑏 . Clearly, 𝑛 = 2𝑏+ 2 and 𝜎2 = 2 =
𝑛 −  2𝑏+ 1 + 1. Since 𝐵 𝐺 = 𝑏, the bound  𝑘 − 1 /2 in 

Theorem 2 is sharp. Further, since  𝑑 𝑣𝑖 =
3

2
 𝑘 − 1 ,𝑏

𝑖=1  

the bound 
3

2
(𝑘 − 1)  in Theorem 3 is sharp as well. 
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