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ABSTRACT
An interval (t, h)-coloring (h ∈ Z+) of a graph G is a
proper edge-coloring α of G with colors 1, . . . , t such
that all colors are used, and the colors of edges inci-
dent to each vertex v satisfy the condition dG(v)− 1 ≤
S (v, α) − S (v, α) ≤ dG(v) + h − 1, where dG(v) is the
degree of a vertex v in G, S (v, α) is the set of colors
of edges incident to v, and S (v, α) and S (v, α) are the
smallest and largest colors of S (v, α), respectively. In
this paper we investigate interval (t, h)-colorings of bi-
partite graphs. In particular, we prove that: 1) if G
is a bipartite graph with ∆(G) = 4, then G has an in-
terval (4, 1)-coloring; 2) if G is a bipartite graph with
∆(G) = 5 and without a vertex of degree 3, then G has
an interval (5, 1)-coloring; 3) if G is a bipartite graph
with ∆(G) = 6 and it has a 2-factor, then G has an
interval (6, 1)-coloring. We also obtain some results on
interval (t, h)-colorings of biregular bipartite graphs and
hypercubes.
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1. INTRODUCTION
All graphs considered in this paper are finite, undi-
rected, connected and have no loops or multiple edges.
Let V (G) and E(G) denote the sets of vertices and
edges of a graph G, respectively. The degree of a vertex
v ∈ V (G) is denoted by dG(v), the maximum degree of
G by ∆(G), the chromatic index of G by χ′(G), and
the diameter of G by diam(G). For F ⊆ E(G), the
subgraph obtained by deleting the edges of F from G is
denoted by G − F . An (a, b)-biregular bipartite graph
G is a bipartite graph G with the vertices in one part
all having degree a and the vertices in the other part all
having degree b. We use the standard notation Qn for
the hypercube. The terms and concepts that we do not
define can be found in [3, 17].

For two positive integers a and b with a ≤ b, the set
{a, . . . , b} is denoted by [a, b] and called an interval. Let
G and H be graphs. The Cartesian product G�H is
defined as follows:

V (G�H) = V (G)× V (H),

E(G�H) = {(u1, v1)(u2, v2) : (u1 = u2 ∧ v1v2 ∈
E(H)) ∨ (v1 = v2 ∧ u1u2 ∈ E(G))}.

A proper edge-coloring of a graph G is a coloring of
the edges of G such that no two adjacent edges receive
the same color. If α is a proper edge-coloring of G and
v ∈ V (G), then S (v, α) denotes the set of colors appear-
ing on edges incident to v. The smallest and largest
colors of S (v, α) are denoted by S (v, α) and S (v, α),
respectively. A proper edge-coloring of a graph G is
an interval t-coloring [1] if all colors are used, and for
any v ∈ V (G), the set S (v, α) is an interval of integers.
A graph G is interval colorable if it has an interval t-
coloring for some positive integer t. The set of all in-
terval colorable graphs is denoted by N. For a graph
G ∈ N, the least and the greatest values of t for which
G has an interval t-coloring are denoted by w(G) and
W (G), respectively.

The concept of interval edge-coloring of graphs was in-
troduced by Asratian and Kamalian [1] in 1987. In [1],
they proved that if G ∈ N, then χ′ (G) = ∆(G). As-
ratian and Kamalian also proved [1, 2] that if a triangle-
free graphG has an interval t-coloring, then t ≤ |V (G)|−
1. In [9, 10], Kamalian investigated interval colorings of
complete bipartite graphs and trees. In particular, he
proved that the complete bipartite graph Km,n has an
interval t-coloring if and only if m + n − gcd(m,n) ≤
t ≤ m + n − 1, where gcd(m,n) is the greatest com-
mon divisor of m and n. In [12], Petrosyan investigated
interval colorings of complete graphs and hypercubes.

In particular, he proved that if n ≤ t ≤ n(n+1)
2

, then
the hypercube Qn has an interval t-coloring. Later, in
[15], it was shown that the hypercube Qn has an inter-

val t-coloring if and only if n ≤ t ≤ n(n+1)
2

. In [16],
Sevast’janov proved that it is an NP -complete prob-
lem to decide whether a bipartite graph has an interval
coloring or not.

For subcubic bipartite graphs, Hansen proved the fol-
lowing

Theorem 1. [7]. If G is a bipartite graph with ∆(G) ≤
3, then G ∈ N and w(G) ≤ 4.

For bipartite graphs with maximum degree 4, Giaro
proved the following

Theorem 2. [6]. If G is a bipartite graph with ∆(G) =



4 and without a vertex of degree 3, then G ∈ N and
w(G) = 4.

Let h ∈ Z+. An interval (t, h)-coloring of a graph G is
a proper edge-coloring α of G with colors 1, . . . , t such
that all colors are used, and the colors of edges inci-
dent to each vertex v satisfy the condition dG(v)− 1 ≤
S (v, α) − S (v, α) ≤ dG(v) + h − 1. If α is an interval
(t, h)-coloring of a graph G and v ∈ V (G), then we de-

fine S (v, α) as follows:

S (v, α) = [S (v, α) , S (v, α) + dG(v) + h− 1] \ S (v, α).
A graph G is interval h-gap-colorable if it has an in-
terval (t, h)-coloring for some positive integer t. The
set of all interval h-gap-colorable graphs is denoted by
Nh. Clearly, N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ Nh. For a
graph G ∈ Nh, the least and greatest values of t for
which G has an interval (t, h)-coloring are denoted by
wh(G) and Wh(G), respectively. Note that N0 = N
and w0(G) = w(G), W 0(G) = W (G).

The concept of interval (t, h)-coloring of graphs was in-
troduced by Petrosyan and Arakelyan [11] in 2007. In
[11], they proved that if G is a connected graph and G ∈
Nh (h ∈ Z+), thenWh(G) ≤ (diam(G) + 1) (∆(G)+h−
1) + 1; moreover, if G is also bipartite, then Wh(G) ≤
diam(G)(∆(G) + h − 1) + 1. The authors also showed
that if G is a regular graph and h ∈ N, then G ∈ Nh

and wh(G) = χ′(G); moreover, G has an interval (t, 1)-
coloring for each t satisfying w1(G) ≤ t ≤ W 1(G). In
[4, 13], the authors determined the exact values of the
parameters w1(G) and W 1(G) for simple cycles, fans,
wheels, complete graphs and complete bipartite graphs.
Also, in [13], it was proved that all subcubic graphs are
interval 1-gap-colorable. On the other hand, Petrosyan
and Khachatrian [14] showed that for every h ∈ N, there
exists a connected graph G such that G /∈ Nh.

In this paper interval (t, h)-colorings of bipartite graphs
are investigated.

2. MAIN RESULTS

Our research is motivated by the following result.

Theorem 3. G ∈ Nh if and only if G�Qh ∈ N.

Proof. Let α be an interval (t, h)-coloring of G. We
construct the edge-coloring β of G�Qh as follows: first
we color each G-fibre of G�Qh according to α; next
for each u ∈ V (G), we color its corresponding Qh-fibre

of G�Qh using h colors of the set S (u, α). Clearly,
for each (u, v) ∈ V (G�Qh), S ((u, v), β) = S (u, α) ∪
S (u, α) = [S (u, α) , S (u, α) + dG(u) + h− 1]. This im-
plies that G�Qh ∈ N.

Now let γ be an interval t′-coloring of G�Qh. The re-
striction of this edge-coloring on the edges of the G-
fibre of G�Qh can be transformed to an interval (t′′, h)-
coloring of G with t′′ ≤ t′.

This theorem implies that each result on interval h-gap-
colorability of a graph G can be transformed to the re-
sult on interval colorability of G�Qh. Moreover, if G is
a bipartite graph, then G�Qh is bipartite, too.

First we consider bipartite graphs with a small max-
imum degree. By Theorem 1, we have that if G is
a bipartite graph with ∆(G) ≤ 3, then G ∈ Nh and
wh(G) ≤ 4 for every h ∈ Z+. On the other hand,
the question whether all bipartite graphs with maxi-
mum degree 4 are interval colorable is an open prob-
lem [8]. Moreover, the problem remains open even for
(4, 3)-biregular bipartite graphs [8]. Nevertheless, now
we show that all bipartite graphs with maximum degree
4 are interval 1-gap-colorable.

Theorem 4. If G is a bipartite graph with ∆(G) = 4,
then G ∈ N1 and w1(G) = 4.

Proof. Let G be a bipartite graph with maximum de-
gree 4. If G has no vertex of degree 3, then this graph
has an interval 4-coloring, by Theorem 2. Thus, G ∈ N1

and w1(G) = 4. Now we assume that G has some ver-
tices with degree 3. Let us construct a new graph G?

as follows: we attach a pendant edge to each vertex of
G with degree 3. It is easy to see that G? is a bipartite
graph with maximum degree 4 and without vertices of
degree 3, so it has an interval 4-coloring, by Theorem 2
again. Now we can consider the restriction of this in-
terval 4-coloring on the edges of the graph G. Clearly,
this coloring is an interval (4, 1)-coloring of G.

By Theorems 1, 3 and 4, we derive the following result:

Corollary 5. If G is a bipartite graph with ∆(G) ≤ 4,
then G�K2 ∈ N.

In [5], the authors proved that all (5, 3)-biregular bipar-
tite graphs are interval 1-gap-colorable. Now we con-
sider bipartite graphs with maximum degree 5.

Theorem 6. If G is a bipartite graph with ∆(G) =
5 and without a vertex of degree 3, then G ∈ N1 and
w1(G) = 5.

Proof. Let G be a bipartite graph with maximum de-
gree 4 and without a vertex of degree 3. By Hall’s The-
orem, G has a matching that saturates all the vertices
of maximum degree 5. Let M be such a matching of G.
Let us consider the graph G′ = G −M . Clearly, G′ is
a bipartite graph with ∆(G′) = 4. As in the proof of
Theorem 4, we are able to prove that G′ has an inter-
val (4, 1)-coloring α such that for each vertex v ∈ V (G′)
with dG′(v) ∈ {1, 2, 4}, S(v, α) is an interval of integers.
Now we define a new edge-coloring β of G′ from α by re-
placing colors 3 and 4 with colors 4 and 5, respectively.
Clearly, for each vertex v ∈ V (G′), we have:

• if dG′(v) = 4, then S(v, β) = {1, 2, 4, 5};
• if dG′(v) = 3, then

S(v, β) ∈ {{1, 2, 4}, {1, 2, 5}, {1, 4, 5}, {2, 4, 5}};

• if dG′(v) = 2, then S(v, β) ∈ {{1, 2}, {2, 4}, {4, 5}};
• if dG′(v) = 1, then S(v, β) ∈ {{1}, {2}, {4}, {5}}.

Now we define an edge-coloring γ of G as follows:



1) for every e ∈ E(G′), let γ(e) = β(e);

2) for every e ∈M , let γ(e) = 3.

Since G has no vertex of degree 3, for each vertex v ∈
V (G), we obtain:

• if dG(v) = 5, then S(v, γ) = [1, 5];
• if dG(v) = 4, then

S(v, γ) ∈ {[1, 4], [2, 5], {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}};

• if dG(v) = 2, then

S(v, γ) ∈ {{1, 2}, {2, 4}, {4, 5}, {1, 3}, {2, 3}, {3, 4}, {3, 5}};

• if dG(v) = 1, then S(v, γ) ∈ {{1}, {2}, {3}, {4}, {5}}.

This implies that γ is an interval (5, 1)-coloring ofG.

Similarly, it can be proved that the following result
holds.

Theorem 7. If G is a bipartite graph with ∆(G) = 5
that has a perfect matching, then G ∈ N1 and w1(G) =
5.

In [5], the authors proved that all (6, 4)-biregular bipar-
tite graphs are interval 1-gap-colorable. Our next result
concerns bipartite graphs with maximum degree 6.

Theorem 8. If G is a bipartite graph with ∆(G) = 6
that has a 2-factor, then G ∈ N1 and w1(G) = 6.

Proof. Let G be a bipartite graph with maximum
degree 6. Let F be a 2-factor of G. Let us consider
the graph G′ = G − E(F ). Clearly, G′ is a bipartite
graph with ∆(G′) = 4. As in the proof of Theorem
4, we are able to prove that G′ has an interval (4, 1)-
coloring α such that for each vertex v ∈ V (G′) with
dG′(v) ∈ {1, 2, 4}, S(v, α) is an interval of integers. Now
we define a new edge-coloring β of G′ from α by replac-
ing colors 3 and 4 with colors 5 and 6, respectively.
Clearly, for each vertex v ∈ V (G′), we have:

• if dG′(v) = 4, then S(v, β) = {1, 2, 5, 6};
• if dG′(v) = 3, then

S(v, β) ∈ {{1, 2, 5}, {1, 2, 6}, {1, 5, 6}, {2, 5, 6}};

• if dG′(v) = 2, then S(v, β) ∈ {{1, 2}, {2, 5}, {5, 6}};
• if dG′(v) = 1, then S(v, β) ∈ {{1}, {2}, {5}, {6}}.

Now we define an edge-coloring γ of G as follows:

1) for every e ∈ E(G′), let γ(e) = β(e);

2) since F is a collection of even cycles in G, we color
the edges of F alternately with colors 3 and 4.

Since G has a 2-factor, for each vertex v ∈ V (G), we
obtain:

• if dG(v) = 6, then S(v, γ) = [1, 6];
• if dG(v) = 5, then

S(v, γ) ∈ {[1, 5], [2, 6], {1, 2, 3, 4, 6}, {1, 3, 4, 5, 6}};

• if dG(v) = 4, then S(v, γ) ∈ {[1, 4], [2, 5], [3, 6]};

• if dG(v) = 3, then S(v, γ) ∈ {[2, 4], [3, 5], {1, 3, 4}, {3, 4, 6}};

• if dG(v) = 2, then S(v, γ) = {3, 4}.

This implies that γ is an interval (6, 1)-coloring ofG.

Next we consider (8, 4)-biregular bipartite graphs.

Theorem 9. If G is an (8, 4)-biregular bipartite graph
with bipartition (X,Y ), then G ∈ N2 and w2(G) = 8.

Proof. Without loss of generality, we may assume
that G is connected (otherwise, we consider every con-
nected component of G). Since G is bipartite and all
vertex degrees in G are even, G has a closed Eulerian
trail C with an even number of edges. We color the
edges of G with colors “Red”and “Blue”, by travers-
ing of the edges of G along the trail C. We color an
odd-indexed edge in C with color “Red”, and an even-
indexed edge in C with color “Blue”. Let ER and EB be
the sets of all “Red”and “Blue”edges in G, respectively.
Clearly, E(G) = ER ∪EB and ER ∩EB = ∅. Define the
subgraphs GR and GB of G as follows:

V (GR) = V (GB) = V (G) and
E (GR) = ER, E (GB) = EB .

Since G is Eulerian, each of subgraphs GR and GB

of G is (4, 2)-biregular bipartite graph with bipartition
(X,Y ). By the result of [7], GR has an interval 4-
coloring α such that for each x ∈ X with dGR(x) = 4,
S(x, α) = [1, 4] and for each y ∈ Y with dGR(y) = 2,
either S(y, α) = {1, 2} or S(y, α) = {3, 4}. We define
a new edge-coloring α′ of GR from α by replacing col-
ors 3 and 4 with colors 7 and 8, respectively. Clearly,
α′ is a proper edge-coloring of GR with colors 1, 2, 7, 8.
Moreover, for each x ∈ X with dGR(x) = 4, S(x, α′) =
{1, 2, 7, 8} and for each y ∈ Y with dGR(y) = 2, either
S(y, α′) = {1, 2} or S(y, α′) = {7, 8}. Similarly, by the
result of [7], GB has an interval 4-coloring β such that
for each x ∈ X with dGB (x) = 4, S(x, β) = [1, 4] and
for each y ∈ Y with dGB (y) = 2, either S(y, β) = {1, 2}
or S(y, β) = {3, 4}. We define a new edge-coloring β′ of
GB from β by replacing colors 1 and 2 with colors 5 and
6, respectively. Clearly, β′ is a proper edge-coloring of
GB with colors 3, 4, 5, 6. Moreover, for each x ∈ X with
dGB (x) = 4, S(x, β′) = [3, 6] and for each y ∈ Y with
dGB (y) = 2, either S(y, β′) = {3, 4} or S(y, β′) = {5, 6}.

Finally, we define an edge-coloring γ of G as follows:

1) for every e ∈ E(GR), let γ(e) = α′(e);

2) for every e ∈ E(GB), let γ(e) = β′(e).

Clearly, γ is a proper edge-coloring of G with colors
1, . . . , 8 such that for each x ∈ X, S(x, γ) = [1, 8], and
for each y ∈ Y , S(y, γ) ∈ {[1, 4], [5, 8], {1, 2, 5, 6}, {3, 4, 7, 8}}.



This shows that γ is an interval (8, 2)-coloring of G.
Thus, G ∈ N2 and w2(G) = 8.

Corollary 10. If G is a (7, 4)-biregular bipartite graph
with bipartition (X,Y ), then G ∈ N2 and w2(G) ≤ 8.

Proof. Clearly, 7|X| = 4|Y |. This implies that |X| =
4k. Let X = {x1, . . . , x4k}. Now we define an auxiliary
graph G′ as follows:

V (G′) = X ∪ Y ∪ Y ′ and E (G′) = E(G) ∪ E′, where
Y ′ = {y′1, . . . , y′k}, and

E′ = {y′ix4i−3, y
′
ix4i−2, y

′
ix4i−1, y

′
ix4i : 1 ≤ i ≤ k}.

Clearly, G′ is an (8, 4)-biregular bipartite graph with bi-
partition (X,Y ∪Y ′). By Theorem 9, G′ has an interval
(8, 2)-coloring. It is not difficult to see that the restric-
tion of this edge-coloring on the edges of G induces an
interval (t, 2)-coloring with 7 ≤ t ≤ 8.

Finally we consider hypercubes.

Theorem 11. If n ∈ N, then

n2+3n−2
2

≤W 1(Qn) ≤ n2+3n+2
2

.

Proof. First of all let us note thatW 1(Qn) ≥ n2+3n−2
2

for any n ∈ N, by the results of [13]. For the proof of the

theorem, it suffices to show that W 1(Qn) ≤ n2+3n+2
2

for

any n ∈ N. Let ϕ be an interval
(
W 1(Qn), 1

)
-coloring

of Qn.

Let i = 0 or 1 and Q
(i)
n+1 be a subgraph of the graph

Qn+1, induced by the vertices

{(i, α2, α3, . . . , αn+1) : (α2, α3, . . . , αn+1) ∈ {0, 1}n}.

Clearly, Q
(i)
n+1 is isomorphic to Qn for i ∈ {0, 1}.

We define an edge-coloring ψ of Qn+1 as follows:

1) for i = 0, 1 and every edge (i, ᾱ)
(
i, β̄

)
∈ E

(
Q

(i)
n+1

)
,

let

ψ
(
(i, ᾱ)

(
i, β̄

))
= ϕ

(
ᾱβ̄

)
;

2) for every ᾱ ∈ {0, 1}n, let

ψ ((0, ᾱ) (1, ᾱ)) =
c, where c ∈ [S((0, ᾱ), ϕ), S((0, ᾱ), ϕ)] \ S((0, ᾱ), ϕ),

if S((0, ᾱ), ϕ)− S((0, ᾱ), ϕ) = n,
S((0, ᾱ), ϕ) + 1, if S((0, ᾱ), ϕ)− S((0, ᾱ), ϕ) = n− 1.

It is not difficult to see that ψ is an interval coloring of
Qn+1 with either W 1(Qn) or W 1(Qn)+1 colors. Thus,
by the results of [15], we obtain W 1(Qn) ≤W (Qn+1) =
(n+1)(n+2)

2
for any n ∈ N.
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