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ABSTRACT 
Hadamard transform is an important tool for the investigati-
on of some problems of Quantum Computing, Coding Theo-
ry and Cryptology, Statistics, Image Analysis, Signal Proces-
sing, Fault-Tolerant Systems, Analysis of Stock Market Da-
ta, Combinatorial Designs and so on. Here we present one 
numerical property of Hadamard matrices. 
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1. INTRODUCTION
There are various types of matrices in the literature having 
distinct properties useful for numerous applications, both 
practical and theoretical. The famous matrix with orthogonal 
property is a Hadamard matrix, which was first defined by 
J.J. Sylvester in 1867 and was studied further by Hadamard 
in 1893. A Hadamard matrix has a simple structure and is 
a square matrix whose entries are either +1 or −1 and the 
rows are mutually orthogonal. In geometric terms, this 
means that every two different rows in a Hadamard matrix 
represent two orthogonal vectors. This definition implies that 
the corresponding properties hold for columns as well. 
Hadamard matrices are used to compute the Hadamard 
transform (also known as the Walsh-Hadamard transform), 
which has plenty of practical applications. It has applications 
even in Banach space theory (see e.g. [1-4]). 

The most important open question in the theory of Hadamard 
matrices is the question of existence. Hadamard conjectured 
that the Hadamard matrix of order 4𝑘𝑘 exists for every 
positive integer 𝑘𝑘. Despite the efforts of several 
mathematicians, this conjecture remains unproved even 
though it is widely believed that it is true. This condition is 
necessary, while the sufficiency part is still open. The 
smallest order for which no Hadamard matrix is presently 
known is 668. 

The goal of this communication is to consider some numeri-
cal functionals of the Hadamard and Sylvester matrices and 
their estimations. The communication is based on the results 
of the papers [4] and [5]. 

2. THE CASE OF HADAMARD MATRI-
CES 
Taking into account the problems related to Hadamard con-
jecture, let us denote by ℕℋ the set of all positive integers 𝑛𝑛 
for which there exists a Hadamard matrix of order 𝑛𝑛. Let 
ℋ𝑛𝑛

𝑎𝑎𝑎𝑎𝑎𝑎 be the set of all Hadamard matrices of order 𝑛𝑛,𝑛𝑛 ∈
ℕℋ. Fix a number 𝑝𝑝 ≥ 1 and for a Hadamard matrix 𝐻𝐻𝑛𝑛 =
[ℎ𝑖𝑖𝑖𝑖𝑛𝑛 ] consider the following numerical functionals: 

𝜚𝜚𝑝𝑝,𝐻𝐻𝑛𝑛(𝑚𝑚) = (∑ |∑ ℎ𝑖𝑖𝑖𝑖𝑛𝑛𝑚𝑚
𝑖𝑖=1 |𝑝𝑝𝑛𝑛

𝑖𝑖=1 )1/𝑝𝑝,    𝑚𝑚 = 1,2,⋯ ,𝑛𝑛, 
𝜚𝜚𝑝𝑝,𝐻𝐻𝑛𝑛 = max

1≤𝑚𝑚≤𝑛𝑛
𝜚𝜚𝑝𝑝,𝐻𝐻𝑛𝑛(𝑚𝑚) and 𝜚𝜚𝑝𝑝,𝑛𝑛 = max

𝐻𝐻𝑛𝑛∈ℋ𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎
𝜚𝜚𝑝𝑝,𝐻𝐻𝑛𝑛. 

It is obvious that 𝑛𝑛1/𝑝𝑝 ≤ 𝜚𝜚𝑝𝑝,𝐻𝐻𝑛𝑛 ≤ 𝑛𝑛�1+
1
𝑝𝑝
� for every 𝑝𝑝 ≥ 1 and 

any 𝐻𝐻𝑛𝑛 ∈ ℋ𝑛𝑛
𝑎𝑎𝑎𝑎𝑎𝑎. Our aim is to improve the last estimations. 

The following statement gives more precise upper and lower 
bownds. 

Theorem 2.1. For every 𝑝𝑝 ≥ 1 and any 𝑛𝑛 ∈ ℕℋ we have 
1
√2
∙ 𝑛𝑛(𝑝𝑝+2)/2𝑝𝑝 ≤ 𝜚𝜚𝑝𝑝,𝑛𝑛 ≤ 𝑛𝑛(𝑝𝑝+2)/2𝑝𝑝,   for   1 ≤ 𝑝𝑝 ≤ 2, 

and 
𝜚𝜚𝑝𝑝,𝑛𝑛 = 𝑛𝑛,   for   𝑝𝑝 ≥ 2. 

In the proof of Theorem 2.1 the probabilistic methods in 
functional spaces are used. 

The following statement is a simple consequence of 
Theorem 2.1. 

Corollary 2.2. For any 𝑛𝑛 ∈ ℕℋ we have 
1
√2
∙ 𝑛𝑛3/2 ≤ 𝜚𝜚1,𝑛𝑛 ≤ 𝑛𝑛3/2. 

3. THE CASE OF SYLVESTER MATRI-
CES 
Particular case of the Hadamard matrix is the Walsh matrix, 
which is defined by the following recursive formula: 
𝑆𝑆(1) = �1 1

1 −1� ,     𝑆𝑆(𝑛𝑛) = �𝑆𝑆
(𝑛𝑛−1) 𝑆𝑆(𝑛𝑛−1)

𝑆𝑆(𝑛𝑛−1) −𝑆𝑆(𝑛𝑛−1)� , 𝑛𝑛 = 2,3,⋯.   (3.1) 

Evidently 𝑆𝑆(𝑛𝑛) is a square matrix of order 2𝑛𝑛. This construc-
tion was studied by Joseph L. Walsh in 1923. It should be 
noted that in fact, examples of Hadamard matrices were ac-
tually first constructed earlier by James Joseph Sylvester in 
1867. He had noted that if 𝐻𝐻 is a Hadamard matrix of order 
𝑛𝑛, then the block-matrix 

�𝐻𝐻 𝐻𝐻
𝐻𝐻 −𝐻𝐻� 

is a Hadamard matrix of order 2𝑛𝑛. This observation can be 
applied repeatedly and it leads to the sequence (3.1) of 
matrices, also called as Sylvester matrices. 

Let  𝑆𝑆(𝑛𝑛) = �𝑠𝑠𝑖𝑖𝑖𝑖
(𝑛𝑛)� be a Sylvester (Walsh) matrix of order 2𝑛𝑛.

Fix a number 𝑝𝑝 ≥ 1 and consider the following functionals 

𝜚𝜚𝑝𝑝
(𝑛𝑛)(𝑚𝑚) = �� �� 𝑠𝑠𝑖𝑖𝑖𝑖

(𝑛𝑛)𝑚𝑚

𝑖𝑖=1
�
𝑝𝑝2𝑛𝑛

𝑖𝑖=1
�
1/𝑝𝑝

,    𝑚𝑚 = 1,2,⋯ , 2𝑛𝑛 

and 
𝜚𝜚𝑝𝑝

(𝑛𝑛) = max
1≤𝑚𝑚≤2𝑛𝑛

𝜚𝜚𝑝𝑝
(𝑛𝑛)(𝑚𝑚). 

By the analogy of the Hadamard matrices it is easy to see 
that for any positive integer 𝑛𝑛 and a number 𝑝𝑝 ≥ 1 we have 

2𝑛𝑛/𝑝𝑝 ≤ 𝜚𝜚𝑝𝑝
(𝑛𝑛) ≤ 2𝑛𝑛�1+

1
𝑝𝑝
� . 

As the Sylvester matrix is a Hadamard matrix, then using 
Theorem 2.1 we can slightly improve the last inequality: 

2𝑛𝑛/𝑝𝑝 ≤ 𝜚𝜚𝑝𝑝
(𝑛𝑛) ≤ 2𝑛𝑛�

1
2
+1
𝑝𝑝
� . 

In case 𝑝𝑝 = 1 the following exact equality for the functional 
𝜚𝜚1

(𝑛𝑛) is valid: 

http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Orthogonal
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Joseph_L._Walsh
http://en.wikipedia.org/wiki/James_Joseph_Sylvester
http://en.wikipedia.org/wiki/Walsh_matrix


Theorem 3.1. For every positive integer 𝑛𝑛 we have 

𝜚𝜚1
(𝑛𝑛) = 𝑚𝑚𝑚𝑚𝑚𝑚

1≤𝑚𝑚≤2𝑛𝑛
𝜚𝜚1

(𝑛𝑛)(𝑚𝑚) =
3𝑛𝑛 + 7

9 ∙ 2𝑛𝑛 + (−1)𝑛𝑛 ∙
2
9 . 

For any 𝑛𝑛 the maximum is attained at the points 𝑚𝑚𝑛𝑛 =
2𝑛𝑛+1+(−1)𝑛𝑛

3
 and 𝑚𝑚𝑛𝑛

′ = 5∙2𝑛𝑛−1+(−1)𝑛𝑛−1

3
. 

 
4. UNSOLVED PROBLEM 
Let us formulate the assertion of Theorem 3.1 in the 
following manner: 

𝜚𝜚1
(𝑛𝑛) = ∑ �∑ 𝑠𝑠𝑖𝑖𝑖𝑖

(𝑛𝑛)𝑚𝑚𝑛𝑛
𝑖𝑖=1 �2𝑛𝑛

𝑖𝑖=1 , 

where 𝑚𝑚𝑛𝑛 = 2𝑛𝑛+1+(−1)𝑛𝑛

3
. 

 
Now let us consider a permutation 𝜎𝜎: {1,2,⋯ , 2𝑛𝑛} →
{1,2,⋯ , 2𝑛𝑛} and the following expression: 

∑ �∑ 𝑠𝑠𝜎𝜎(𝑖𝑖)𝑖𝑖
(𝑛𝑛)𝑚𝑚𝑛𝑛

𝑖𝑖=1 �2𝑛𝑛
𝑖𝑖=1 . 

By Corollary 2.2 for every permutation 𝜎𝜎: {1,2,⋯ , 2𝑛𝑛} →
{1,2,⋯ , 2𝑛𝑛} we have 

∑ �∑ 𝑠𝑠𝜎𝜎(𝑖𝑖)𝑖𝑖
(𝑛𝑛)𝑚𝑚𝑛𝑛

𝑖𝑖=1 �2𝑛𝑛
𝑖𝑖=1 ≤ 23𝑛𝑛/2. 

 
The authors do not know yet the answer for the following 
conjecture: 
 
Conjecture. For any positive integer 𝑛𝑛 and for any 
permutation 𝜎𝜎: {1,2,⋯ , 2𝑛𝑛} → {1,2,⋯ , 2𝑛𝑛} the following 
inequality holds: 

∑ �∑ 𝑠𝑠𝜎𝜎(𝑖𝑖)𝑖𝑖
(𝑛𝑛)𝑚𝑚𝑛𝑛

𝑖𝑖=1 �2𝑛𝑛
𝑖𝑖=1 ≥ 3𝑛𝑛+7

9
∙ 2𝑛𝑛 + (−1)𝑛𝑛 ∙ 2

9
 . 

 
Note that we have conducted a lot of computer experiments. 
The results do not contradict this Conjecture, though a 
theoretical proof is not known yet. 
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