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ABSTRACT 
A cap in a projective or affine geometry over a finite field 𝐹𝐹𝑞𝑞 
is a set of points no three of which are collinear. We give 
some new construction for caps in affine space 𝐴𝐴𝐴𝐴(𝑛𝑛, 3), 
which lead to some new lower bounds on the possible 
maximal cardinality of caps.  
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1. INTRODUCTION
A cap in a projective 𝑃𝑃𝐴𝐴(𝑛𝑛, 𝑞𝑞) or affine 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) geometry 
over a finite field 𝐹𝐹𝑞𝑞 is a set of points no three of which are 
collinear. The main problem in the theory of caps is to find 
the maximal size of a cap in 𝑃𝑃𝐴𝐴(𝑛𝑛,𝑞𝑞) or 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞). This is 
also known as the packing problem. In this paper 𝑠𝑠𝑛𝑛,𝑞𝑞 and 
𝑠𝑠𝑛𝑛,𝑞𝑞
′  denotes the size of the largest caps in  𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) and   
𝑃𝑃𝐴𝐴(𝑛𝑛, 𝑞𝑞), respectively. Presently, only the following exact 
values are known: 𝑠𝑠𝑛𝑛,2 = 𝑠𝑠𝑛𝑛,2

′ = 2𝑛𝑛, 𝑠𝑠2,𝑞𝑞 = 𝑠𝑠2,𝑞𝑞
′ = 𝑞𝑞 + 1 if 𝑞𝑞 

is odd, 𝑠𝑠2,𝑞𝑞 = 𝑠𝑠2,𝑞𝑞
′ = 𝑞𝑞 + 2 if  𝑞𝑞 is even, and 𝑠𝑠3,𝑞𝑞

′ = 𝑞𝑞2 +
1 , 𝑠𝑠3,𝑞𝑞 = 𝑞𝑞2 [1,2]. Aside of these general results the precise 
values are known only in the following cases: 𝑠𝑠4,3 = 𝑠𝑠4,3

′ =
20[3], 𝑠𝑠5,3

′ = 56 [4],  𝑠𝑠5,3 = 45 [5], 𝑠𝑠4,4
′ = 41[6],  𝑠𝑠6,3 =

112 [7],  𝑠𝑠7,3 = 236 [8],  𝑠𝑠7,3
′ = 248 [9]. In the other cases, 

only lower and upper bounds on the sizes of caps in 
 𝐴𝐴𝐴𝐴(𝑛𝑛, 𝑞𝑞) and   𝑃𝑃𝐴𝐴(𝑛𝑛, 𝑞𝑞) are known [12, 13, 14]. Finding the 
exact value for  𝑠𝑠𝑛𝑛,𝑞𝑞 and 𝑠𝑠𝑛𝑛,𝑞𝑞

′  in general case seems to be a 
very hard problem [10,11]. There are many well-known 
constructions (doubling, product and recursive) which allow 
to create large high-dimensional caps based on large low-
dimensional caps [12,13,14,15,16,17,18,19,20]. In this paper 
we give some new construction for caps in affine space 
𝐴𝐴𝐴𝐴(𝑛𝑛, 3), which lead to some new lower bounds on the 
possible maximal cardinality of caps.  

2. MAIN RESULTS
It is easy to see that if 𝑆𝑆 is a cap in 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) then for any 
triple of distinct points  𝛼𝛼,𝛽𝛽,𝛾𝛾 ∈ 𝑆𝑆, 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 ≠ 0(𝑚𝑚𝑚𝑚𝑚𝑚3). 
We will introduce two auxiliary sets, which will be 
important in our consideration. Let’s denote by 𝐵𝐵𝑛𝑛 =
{(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) /𝛼𝛼𝑖𝑖 = 0,1} and by 𝑃𝑃𝑛𝑛 the maximal sets of points 
of 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) satisfying the following two conditions: 

i) for any triple of  distinct points 𝛼𝛼,𝛽𝛽, 𝛾𝛾 ∈ 𝑃𝑃𝑛𝑛,
𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 ≠ 0(𝑚𝑚𝑚𝑚𝑚𝑚3)

ii) for any two distinct points 𝛼𝛼,𝛽𝛽 ∈ 𝑃𝑃𝑛𝑛, there
exists 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, such that 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 2 .

It is convenient to assume that 𝑃𝑃1 = {2}. 
We will define the concatenation of the points in the 
following way. Let 𝐴𝐴 ⊂ 𝐴𝐴𝐴𝐴(𝑛𝑛, 3) and 𝐵𝐵 ⊂ 𝐴𝐴𝐴𝐴(𝑚𝑚, 3). We 
form a new set  𝐴𝐴𝐵𝐵 ⊂ 𝐴𝐴𝐴𝐴(𝑛𝑛 + 𝑚𝑚, 3) 

consisting of all points 𝛼𝛼 = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ,𝛼𝛼𝑛𝑛+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚), 
where 𝛼𝛼′ = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) ∈ 𝐴𝐴, and 
𝛽𝛽′ = (𝛼𝛼𝑛𝑛+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚) ∈ 𝐵𝐵. In a similar way one can define 
the concatenation of the points of three, four, …etc. sets. 
Note that, if  𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝐹𝐹3, then 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 0(𝑚𝑚𝑚𝑚𝑚𝑚3) if and 
only if 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧 or they are pairwise distinct. 

Theorem 1. For any triple of natural numbers n, m, k, 
|𝑃𝑃𝑛𝑛+𝑚𝑚+𝑘𝑘| ≥ |𝑃𝑃𝑛𝑛||𝑃𝑃𝑚𝑚||𝐵𝐵𝑘𝑘| + |𝑃𝑃𝑛𝑛||𝐵𝐵𝑚𝑚||𝑃𝑃𝑘𝑘| + |𝐵𝐵𝑛𝑛||𝑃𝑃𝑚𝑚||𝑃𝑃𝑘𝑘|. 

Proof. Suppose we have the sets 𝑃𝑃𝑛𝑛 ⊂ 𝐴𝐴𝐴𝐴(𝑛𝑛, 3), 𝑃𝑃𝑚𝑚 ⊂
𝐴𝐴𝐴𝐴(𝑚𝑚, 3), and  𝐵𝐵𝑘𝑘 ⊂ 𝐴𝐴𝐴𝐴(𝑘𝑘, 3). Let's form a new set 𝐴𝐴1 =
𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚𝐵𝐵𝑘𝑘 by concatenation the points of the sets 𝑃𝑃𝑛𝑛, 𝑃𝑃𝑚𝑚, 𝐵𝐵𝑘𝑘. 
We can form  the sets 𝐴𝐴2 = 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚𝑃𝑃𝑘𝑘 and 𝐴𝐴3 = 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚𝑃𝑃𝑘𝑘 ⊂
𝐴𝐴𝐴𝐴(𝑛𝑛 + 𝑚𝑚 + 𝑘𝑘, 3), as mentioned above. Clearly, the sets 
𝐴𝐴1, 𝐴𝐴2 and 𝐴𝐴3 are pairwise disjoint. 
First, we have to prove that the sets 𝐴𝐴1 = 𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚𝐵𝐵𝑘𝑘 , 𝐴𝐴2 =
𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚𝑃𝑃𝑘𝑘 and 𝐴𝐴3 = 𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚𝑃𝑃𝑘𝑘 will satisfy ii). If we have the 
points  𝛼𝛼 = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚+𝑘𝑘) and  𝛽𝛽 = (𝛽𝛽1, … ,𝛽𝛽𝑛𝑛+𝑚𝑚+𝑘𝑘) ∈
𝐴𝐴1 = 𝑃𝑃𝑛𝑛𝑃𝑃𝑚𝑚𝐵𝐵𝑘𝑘, then the points 𝛼𝛼′ = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) and 𝛽𝛽′ =
(𝛽𝛽1 , … ,𝛽𝛽𝑛𝑛) will belong to the set 𝑃𝑃𝑛𝑛 and the definition of 𝑃𝑃𝑛𝑛 
implies 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 2 for some 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. 
Second, we have to prove by contradiction that the set 𝐴𝐴1will 
satisfy the condition i). Assume that there are pairwise 
distinct points 𝛼𝛼 = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚+𝑘𝑘), 𝛽𝛽 = (𝛽𝛽1 , … ,𝛽𝛽𝑛𝑛+𝑚𝑚+𝑘𝑘) 
and 𝛾𝛾 = (𝛾𝛾1, … , 𝛾𝛾𝑛𝑛+𝑚𝑚+𝑘𝑘) ∈ 𝐴𝐴1 such that 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 =
0(𝑚𝑚𝑚𝑚𝑚𝑚3). Then 𝛼𝛼′ + 𝛽𝛽′ + 𝛾𝛾′ = 0(𝑚𝑚𝑚𝑚𝑚𝑚3), 𝛼𝛼′′ + 𝛽𝛽′′ + 𝛾𝛾′′ =
0(𝑚𝑚𝑚𝑚𝑚𝑚3), 𝛼𝛼′′′ + 𝛽𝛽′′′ + 𝛾𝛾′′′ = 0(𝑚𝑚𝑚𝑚𝑚𝑚3), where 𝛼𝛼′ =
(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛), 𝛽𝛽′ = (𝛽𝛽1 , … ,𝛽𝛽𝑛𝑛), 𝛾𝛾′ = (𝛾𝛾1, … , 𝛾𝛾𝑛𝑛),        𝛼𝛼′′ =
(𝛼𝛼𝑛𝑛+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚),    𝛽𝛽′′ = (𝛽𝛽𝑛𝑛+1, … ,𝛽𝛽𝑛𝑛+𝑚𝑚),      
𝛾𝛾′′ = (𝛾𝛾𝑛𝑛+1, … , 𝛾𝛾𝑛𝑛+𝑚𝑚), 𝛼𝛼′′′ = (𝛼𝛼𝑛𝑛+𝑚𝑚+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚+𝑘𝑘),
𝛽𝛽′′′ = (𝛽𝛽𝑛𝑛+𝑚𝑚+1, … ,𝛽𝛽𝑛𝑛+𝑚𝑚+𝑘𝑘), 𝛾𝛾′′′ = (𝛾𝛾𝑛𝑛+𝑚𝑚+1, … , 𝛾𝛾𝑛𝑛+𝑚𝑚+𝑘𝑘). 
Taking into account the definitions of 𝑃𝑃𝑛𝑛, 𝑃𝑃𝑚𝑚 and 𝐵𝐵𝑘𝑘 , the last 
three equalities hold 𝛼𝛼′ = 𝛽𝛽′ = 𝛾𝛾′, 𝛼𝛼′′ = 𝛽𝛽′′ = 𝛾𝛾′′ and 
𝛼𝛼′′′ = 𝛽𝛽′′′ = 𝛾𝛾′′′. Hence α= 𝛽𝛽 = 𝛾𝛾, which contradicts our 
assumption. By a similar argument one can prove that the 
sets 𝐴𝐴2 and 𝐴𝐴3 also satisfy the conditions i) and  ii).
Now we want to prove that the set  𝐴𝐴 = 𝐴𝐴1 ∪ 𝐴𝐴2 ∪ 𝐴𝐴3 also 
satisfies the conditions i)  and  ii). Assume that there are 
three distinct points 
𝛼𝛼 = (𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ,𝛼𝛼𝑛𝑛+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚,𝛼𝛼𝑛𝑛+𝑚𝑚+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚+𝑘𝑘),         
 𝛽𝛽 = (𝛽𝛽1, … ,𝛽𝛽𝑛𝑛 ,𝛽𝛽𝑛𝑛+1, … ,𝛽𝛽𝑛𝑛+𝑚𝑚,𝛽𝛽𝑛𝑛+𝑚𝑚+1, … ,𝛽𝛽𝑛𝑛+𝑚𝑚+𝑘𝑘),     
 𝛾𝛾 = (𝛾𝛾1, … , 𝛾𝛾𝑛𝑛 ,𝛾𝛾𝑛𝑛+1, … , 𝛾𝛾𝑛𝑛+𝑚𝑚, 𝛾𝛾𝑛𝑛+𝑚𝑚+1, … ,𝛾𝛾𝑛𝑛+𝑚𝑚+𝑘𝑘) ∈ 𝐴𝐴 
such that 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 0(𝑚𝑚𝑚𝑚𝑚𝑚3). Since we have already 
proved that the points 𝛼𝛼,𝛽𝛽,𝛾𝛾 can not belong to the same 
𝐴𝐴𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 3, thereby the following two cases are possible. 

Case 1. Each point belongs to only one set, say 𝛼𝛼 ∈ 𝐴𝐴1,𝛽𝛽 ∈
𝐴𝐴2 and 𝛾𝛾 ∈ 𝐴𝐴3. By construction of the sets 𝐴𝐴1 and 𝐴𝐴2, 𝛼𝛼′ =
(𝛼𝛼1, … ,𝛼𝛼𝑛𝑛) and 𝛽𝛽′ = (𝛽𝛽1, … ,𝛽𝛽𝑛𝑛) belong to 𝑃𝑃𝑛𝑛. Hence, there 
exists 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, such that 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 2. But 𝛾𝛾′ =
(𝛾𝛾1, … ,𝛾𝛾𝑛𝑛) ∈ 𝐵𝐵𝑛𝑛. Hence 𝛾𝛾𝑖𝑖 = 0 𝑚𝑚𝑜𝑜 1. Therefore 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 +
𝛾𝛾𝑖𝑖 ≠ 0(𝑚𝑚𝑚𝑚𝑚𝑚3), which contradicts our assumption. 



Case2. Only two points from 𝛼𝛼,𝛽𝛽, 𝛾𝛾 belong to the same set, 
say 𝛼𝛼,𝛽𝛽 ∈ 𝐴𝐴1 and 𝛾𝛾 ∈ 𝐴𝐴2. Then again 𝛼𝛼′′ + 𝛽𝛽′′ + 𝛾𝛾′′ =
0(𝑚𝑚𝑚𝑚𝑚𝑚3), where 𝛼𝛼′′ = (𝛼𝛼𝑛𝑛+1, … ,𝛼𝛼𝑛𝑛+𝑚𝑚) and 𝛽𝛽′′ =
(𝛽𝛽𝑛𝑛+1, … ,𝛽𝛽𝑛𝑛+𝑚𝑚) ∈ 𝑃𝑃𝑚𝑚, 𝛾𝛾′′ = (𝛾𝛾𝑛𝑛+1, … , 𝛾𝛾𝑛𝑛+𝑚𝑚) ∈ 𝐵𝐵𝑚𝑚. Since 
𝛼𝛼′′,𝛽𝛽′′ ∈ 𝑃𝑃𝑚𝑚 there is 𝑖𝑖, 𝑛𝑛 + 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 + 𝑚𝑚, such that 𝛼𝛼𝑖𝑖 =
𝛽𝛽𝑖𝑖 = 2, but  𝛾𝛾𝑖𝑖 = 0 𝑚𝑚𝑜𝑜 1, because  𝛾𝛾′′ ∈ 𝐵𝐵𝑚𝑚. 
Therefore 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖 ≠ 0(𝑚𝑚𝑚𝑚𝑚𝑚3), which again contradicts 
𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 0(𝑚𝑚𝑚𝑚𝑚𝑚3). So, A satisfies the condition i). To 
show that 𝐴𝐴 satisfies the condition ii) assume that  𝛼𝛼,𝛽𝛽 ∈ 𝐴𝐴. 
Since we have already proved that 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3 satisfy the 
condition ii), it is enough to consider the case when α and β 
belong to distinct sets, say 𝛼𝛼 ∈ 𝐴𝐴1 and 𝛽𝛽 ∈ 𝐴𝐴2. 
Then it is easy to see that 𝛼𝛼′,𝛽𝛽′ ∈ 𝑃𝑃𝑛𝑛. Hence there is 𝑖𝑖, 1 ≤
𝑖𝑖 ≤ 𝑛𝑛, such that 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 2. Note that other cases can be 
proved by similar arguments. 
It is obvious that |𝑃𝑃1| = |{2}| = 1 and |𝑃𝑃2| = |{20,22}| =
|{20,21}| = |{21,22}| = ⋯ = 2. Applying Theorem 1 for 
small odd numbers and presenting them as the sum of three 
numbers, we can prove that  
|𝑃𝑃1+1+1| ≥ 6, |𝑃𝑃4| ≥ 12, |𝑃𝑃3+1+1| ≥ 32, |𝑃𝑃6| ≥ 64 , |𝑃𝑃7| =
|𝑃𝑃1+3+3| ≥ 168, |𝑃𝑃8| ≥ 336,|𝑃𝑃9| = |𝑃𝑃3+3+3| ≥ 864, 
|𝑃𝑃10| ≥ 1728, |𝑃𝑃11| = |𝑃𝑃3+3+5| ≥ 4224, etc.  
Note that the value of the right side of the inequality in 
Theorem 1 essentially depends on the representation of  𝑛𝑛 as 
the sum of three numbers. 
 
Corollary 1. For every natural numbers 𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛2𝑘𝑘+1, 
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�𝐵𝐵𝑛𝑛1+𝑛𝑛2+𝑛𝑛3��𝑃𝑃𝑛𝑛4��𝑃𝑃𝑛𝑛5��… � ��𝑃𝑃𝑛𝑛2𝑘𝑘��𝐵𝐵𝑛𝑛2𝑘𝑘+1� +
�𝐵𝐵𝑛𝑛2𝑘𝑘��𝑃𝑃𝑛𝑛2𝑘𝑘+1�� + �𝐵𝐵𝑛𝑛1+⋯+𝑛𝑛2𝑘𝑘−1��𝑃𝑃𝑛𝑛2𝑘𝑘��𝑃𝑃𝑛𝑛2𝑘𝑘+1�. 
 
Proof. We use induction on k. If k=1, then �𝑃𝑃𝑛𝑛1+𝑛𝑛2+𝑛𝑛3� ≥
�𝑃𝑃𝑛𝑛1��𝑃𝑃𝑛𝑛2��𝐵𝐵𝑛𝑛3� + �𝑃𝑃𝑛𝑛1��𝐵𝐵𝑛𝑛2��𝑃𝑃𝑛𝑛3� + �𝐵𝐵𝑛𝑛1��𝑃𝑃𝑛𝑛2��𝑃𝑃𝑛𝑛3�, hence we 
are done. Assume that the inequality holds  for the numbers 
𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛2𝑘𝑘−1 and we will prove it for numbers 
𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛2𝑘𝑘+1. By Theorem 1, 
�𝑃𝑃(𝑛𝑛1+⋯+𝑛𝑛2𝑘𝑘−1)+𝑛𝑛2𝑘𝑘+𝑛𝑛2𝑘𝑘+1� ≥ �𝑃𝑃𝑛𝑛1+⋯+𝑛𝑛2𝑘𝑘−1��𝑃𝑃𝑛𝑛2𝑘𝑘��𝐵𝐵𝑛𝑛2𝑘𝑘+1� +
�𝑃𝑃𝑛𝑛1+⋯+𝑛𝑛2𝑘𝑘−1��𝐵𝐵𝑛𝑛2𝑘𝑘��𝑃𝑃𝑛𝑛2𝑘𝑘+1�+ �𝐵𝐵𝑛𝑛1+⋯+𝑛𝑛2𝑘𝑘−1��𝑃𝑃𝑛𝑛2𝑘𝑘��𝑃𝑃𝑛𝑛2𝑘𝑘+1� =
�𝑃𝑃𝑛𝑛1+⋯+𝑛𝑛2𝑘𝑘−1� ∙ ��𝑃𝑃𝑛𝑛2𝑘𝑘��𝐵𝐵𝑛𝑛2𝑘𝑘+1� + �𝐵𝐵𝑛𝑛2𝑘𝑘��𝑃𝑃𝑛𝑛2𝑘𝑘+1�� +
�𝐵𝐵𝑛𝑛1+⋯+𝑛𝑛2𝑘𝑘−1��𝑃𝑃𝑛𝑛2𝑘𝑘��𝑃𝑃𝑛𝑛2𝑘𝑘+1�.   
Recalling the induction hypothesis and replacing 
�𝑃𝑃𝑛𝑛1+⋯+𝑛𝑛2𝑘𝑘−1� by the corresponding inequality we obtain the 
desired result. 
 
Corollary 2. For every natural number 𝑛𝑛,  

|𝑃𝑃3𝑛𝑛| ≥ 3|𝑃𝑃𝑛𝑛|2|𝐵𝐵𝑛𝑛|. 
 
Corollary 3. For every natural number 𝑛𝑛,  

|𝑃𝑃𝑛𝑛+2| ≥ 4 ∙ |𝑃𝑃𝑛𝑛| + 2𝑛𝑛. 
 
Corollary 4. For every natural number n,  

|𝑃𝑃3𝑛𝑛| ≥ 32𝑛𝑛−123𝑛𝑛−2𝑛𝑛 . 
 
Proof. We use induction on n. If 𝑛𝑛 = 1, then |𝑃𝑃3| ≥
|{220,221,202,212,022,122}| = 6 = 321−1231−21 and we 
are done when n=1. Supposing, that it is true for 𝑛𝑛 = 𝑘𝑘 − 1, 
let's prove it for 𝑛𝑛 = 𝑘𝑘. We have by Theorem 1,  
�𝑃𝑃3𝑘𝑘� = �𝑃𝑃3𝑘𝑘−1+3𝑘𝑘−1+3𝑘𝑘−1� ≥
�𝑃𝑃3𝑘𝑘−1��𝑃𝑃3𝑘𝑘−1��𝐵𝐵3𝑘𝑘−1�+�𝑃𝑃3𝑘𝑘−1��𝐵𝐵3𝑘𝑘−1��𝑃𝑃3𝑘𝑘−1� +
�𝐵𝐵3𝑘𝑘−1��𝑃𝑃3𝑘𝑘−1��𝑃𝑃3𝑘𝑘−1� = 3�𝑃𝑃3𝑘𝑘−1�

2�𝐵𝐵3𝑘𝑘−1�. 
By the induction hypothesis,  

3�𝑃𝑃3𝑘𝑘−1�
2�𝐵𝐵3𝑘𝑘−1� ≥ 3�32𝑘𝑘−1−123𝑘𝑘−1−2𝑘𝑘−1�

2
23𝑘𝑘−1

= 3132(2𝑘𝑘−1−1)   22(3𝑘𝑘−1−2𝑘𝑘−1)23𝑘𝑘−1

= 32𝑘𝑘−123𝑘𝑘−2𝑘𝑘 .  
In a similar way one can prove the following. 
 
Corollary 5. For every natural numbers n, k, m, 

�𝑃𝑃3𝑛𝑛+3𝑚𝑚+3𝑘𝑘� ≥
23𝑛𝑛+3𝑚𝑚+3𝑘𝑘

32 ��
3
2�

2𝑛𝑛+2𝑚𝑚

+ �
3
2�

2𝑚𝑚+2𝑘𝑘

+ �
3
2�

2𝑘𝑘+2𝑛𝑛

�. 

 
Theorem 2. For every natural number n and m,  

𝑠𝑠𝑚𝑚+𝑛𝑛,3 ≥ |𝑃𝑃𝑛𝑛||𝐵𝐵𝑚𝑚| + |𝐵𝐵𝑛𝑛||𝑃𝑃𝑚𝑚| . 
 
Proof. Suppose we have the sets 𝐴𝐴1 = 𝑃𝑃𝑛𝑛𝐵𝐵𝑚𝑚 and 𝐴𝐴2 =
𝐵𝐵𝑛𝑛𝑃𝑃𝑚𝑚. It is obvious that 𝐴𝐴1,𝐴𝐴2 ⊂ 𝑃𝑃𝑛𝑛+𝑚𝑚 and  𝐴𝐴1 ∩ 𝐴𝐴2 = ∅. 
We will prove the inequality by contradiction. Assume that  
there exist three distinct points 𝛼𝛼,𝛽𝛽, 𝛾𝛾 ∈ 𝐴𝐴1  ∪ 𝐴𝐴2 such  that 
𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 0(𝑚𝑚𝑚𝑚𝑚𝑚3). We suppose that two of them belong 
to one set (say 𝛼𝛼,𝛽𝛽 ∈ 𝐴𝐴1) and the third point to other 
(say 𝛾𝛾 ∈ 𝐴𝐴2). By definition of  𝑃𝑃𝑛𝑛 there is 𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, such 
that 𝛼𝛼𝑖𝑖 = 𝛽𝛽𝑖𝑖 = 2. But by definition of 𝐵𝐵𝑛𝑛 , 𝛾𝛾𝑖𝑖 = 0 𝑚𝑚𝑜𝑜 1 , hence  
𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖 ≠ 0(𝑚𝑚𝑚𝑚𝑚𝑚3), which contradicts that  𝛼𝛼 + 𝛽𝛽 +
𝛾𝛾 = 0(𝑚𝑚𝑚𝑚𝑚𝑚3). In a similar way one can prove that the case 
when two points belong to  𝐴𝐴2 and the last one belongs to 𝐴𝐴1 
is impossible, hence the inequality is true. 
 
Corollary 6. For every natural number 𝑛𝑛 (𝑛𝑛 ≥ 2),  

𝑠𝑠𝑛𝑛,3 ≥ 2|𝑃𝑃𝑛𝑛−1| + |𝐵𝐵𝑛𝑛−1|. 
For example,  

𝑠𝑠10,3 ≥ 2|𝑃𝑃9| + |𝐵𝐵9| = 2 ∙ 864 + 512 = 2240. 
 
Theorem 3. For every natural 𝑛𝑛 (𝑛𝑛 ≥ 2) and 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 −
1, 

𝑠𝑠𝑛𝑛+1,3 ≥ |𝑃𝑃𝑖𝑖||𝑃𝑃𝑛𝑛−𝑖𝑖| + |𝑃𝑃𝑖𝑖||𝐵𝐵𝑛𝑛−𝑖𝑖| + |𝐵𝐵𝑖𝑖||𝑃𝑃𝑛𝑛−𝑖𝑖| + |𝐵𝐵𝑛𝑛|. 
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