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ABSTRACT 
There are several researches, which identify the following 

two problems as main bottlenecks of post-silicon validation: 

bug detection/localization and coverage calculation. 

Although FPGA prototyping is considered as pre-silicon 

verification the coverage calculation and bug localization are 

as much challenging as for post-silicon phase. This article 

presents a novel approach to solve the above mentioned 

issues by embedding synthesizable assertions into prototype. 

The experiment has been performed on USB3.0 link layer 

prototype.  During the experiment all injected errors have 

been successfully detected and functional coverage has been 

calculated. The main drawback of the proposed approach is 

unacceptable resource utilization which, was solved by 

adding reconfigurable regions into FPGA. Synthesis results 

are presented for group of assertions intended to test 

entry/exit functionality of low power mode which show that 

the FPGA resource overhead is less than 2% of USB3.0 link 

prototype. This approach gives us ability to implement 

USB3.0 design and all assertions for single test in one FPGA 

with acceptable timing results and minor area overhead. 
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1. INTRODUCTION
   [1] presents the overview of post-silicon validation 

problem and how it differs from traditional pre-silicon 

verification and manufacturing testing. The following 

challenges of post-silicon validation introduced in research 

exist in FPGA prototyping: bug detection/localization and 

coverage calculation. 

Although there are multiple tools and methods for bug 

detection provided by USB IF, there is a lack of bug 

localization tools. Insufficient controllability and 

observability due to limited access to internal signals during 

prototyping is a bottleneck of fast bug detection and fixing. 

Several methods exist for measuring pre-silicon coverage 

including code coverage, Finite State Machine (FSM) 

coverage, assertion coverage and mutation coverage (e.g., 

checking if the injected bug is caught during verification). 

Although FPGA prototyping is considered as pre-silicon 

verification, the coverage calculation is as much challenging 

as for post-silicon. Most of researches try to find an 

acceptable solution for this issue with respect to use of 

resources [2]. Only few articles are related to coverage 

measurement for FPGA prototyping. Some of the proposed 

methodologies could be used for both cases. Performed 

researches use only small group of assertions intended to test 

corner cases or known issues and don’t take into account full 

verification of digital core. As a result there is no data related 

to resource utilization which is very important for 

prototyping. As [7] suggests more than 70% utilization of 

FPGA resources can cause performance issues.  

Embedding synthesizable assertion into prototype could be 

an effective solution for the above mentioned issues. The 

article presents an approach for optimization of assertions to 

solve the resource utilization issue by adding reconfigurable 

regions into FPGA. All verification and coverage 

calculations are done for USB3.0 link layer. The 

synthesizable assertions are developed for transceiver (TX), 

receiver (RX) and Link Training and Status State Machine 

(LTSSM) sub-modules and for link interfaces (e.g., pipe 

interface, which is used between USB3.0 link and physical 

layers). The proposed approach can be used during FPGA 

prototyping of any digital core and will facilitate error 

detection/localization. The approach will make possible the 

calculation of functional coverage for FPGA prototyping 

which is a very important metric for quality of digital core. 

2. USB3.0 LINK PROTOTYPE 

ARCHITECTURE 
The architecture of USB3.0 link layer prototype is 

presented in Figure 2.1. Assertions are added for: TX 

controller, RX controller, LTSSM and for 

internal/external interfaces. These are most important 

and error prone modules of USB3.0 link and most of 

the scenarios described in [3] can be detected and 

verified by monitoring processes within these 

modules. Assertions for coverage and for checking 

correct behavior are used. The first type is used for 

coverage calculation as its name suggests. If the 

expected scenario does not happen  after the start of 

assertion the state of the first type becomes IDLE and 

status “Not covered”. The second type is used to detect 

the protocol or other functional violations, therefore, if 

the expected scenario doesn’t happen the state of 

assertion becomes “ERROR”. This assertions match 

with “cover” and “assert” statements in SystemVerilog 

Assertion (SVA) language. In the following sections 

only two assertions are presented for each module (one 

for “assert” type and one for “cover” type) because of 

size limitations. 
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2.1 TX CONTROLLER ASSERTIONS 
The number of developed assertions for coverage is 34 

and there are 6 assertions used as checker for this 

module. First one is used to check if the length of a 

packet payload is not greater than 1024. It is “assert” 

type and will fail if data length is greater than 1024. 

The implementations of synthesizable RTL for these 

assertions are straightforward and is not presented 

here.

This assertion checks whether the port  has “Loopback 

Master Capability” and is directed to go to Loopback. 

If so then it transmits identical TS2 ordered sets with 

the Loopback bit set upon entry to Recovery-

>Configuration. 

2.2 RX CONTROLLER ASSERTIONS 
The number of developed assertions for coverage is 31 

and there are 5 assertions used as checker for this 

module. First one checks whether the port receiving a 

header packet sends an LBAD when after a valid 

HPSTART is detected and any K-symbol occurrence 

or any 8b/10b error is detected. This assertion is 

implemented as an assert type because according to 

protocol the link must respond with LBAD when there 

is a CRC5 error in link control work. Not doing so will 

cause a loss of data or corrupted packet header will be 

treated as correct. 

The second assertion checks the scenario when one of 

end packet payload framing symbols is corrupted. As 

[5] states if one of four framing symbols is corrupted 

the link partner still must be able to recognize the end 

payload framing. This type of scenarios must be 

verified during hardware validation and this assertion 

can be used to check whether it is covered. 

2.3 LTSSM ASSERTIONS 

These assertions check whether the behavior of the 

LTSSM is according specification and if different 

functionalities are covered. The number of developed 

assertions for coverage is 332 and there are 12 

assertions used as checker for this module.  The first 

assertion checks if the link error counter is nullified 

after reset. This belongs to “assert” group because [5] 

defines that reset is one of the conditions when error 

count should become zero. 

The second assertion checks if port upon receiving 

U1/U2 EXIT or U3 wakeup LFPS handshake signal, 

sequence reset_link_error_cnt_after_reset;  @(posedge link_clk) 

ltmcs_link_err_ctr!=0 
##1  !link_reset_n 

##1 link_reset_n [->1] 

##1 ltmcs_link_err_ctr==0; 

endsequence 

sequence dpp_endf_err_1; @(posedge mac3_clk) 

(dpp_length[1:0] != 2'h0) ##1 (dpp_length[1:0] == 2'h0) ##0 

(pkt_state == DPP_XFR) 
 ##0 (match4(pkt_window_9b, {EPF, END, END, END}) == 3) 

 ##1 ({lnmcr_data_last, lnmcr_data_err} == 2'b10); 

endsequence 
svc_u3link_rpkt_dpp_endf_err_1: 

cover property (dpp_endf_err_1) 

sequence CRC5_error_TxLBAD_recovery; @(posedge mac3_clk) 

(pkt_state != HDR3) ##1 (pkt_state == HDR3) ##0 !crc5_ok 
##1 que_lbad 

##1 replay_wait 

##1 (lt_link_state == RECOV) [->1] 
##0 replay_wait; 

endsequence 

svc_u3link_rpkt_CRC5_error_TxLBAD_recovery: assert property 

(CRC5_error_TxLBAD_recovery) 

sequence RecovConfg_TxTS2_SetLPBK; @(posedge link_clk) 

(lt_link_state != RECOV) ##1 (lt_link_state == RECOV) 

##1 (tx_state == TS_BLK) [->1] 
##1 lndb_lpbken; 

endsequence 

svc_u3link_tctrl_RecovConfg_TxTS2_SetLPBK: cover 

property (RecovConfg_TxTS2_SetLPBK) 

sva_u3link_tctrl_data_gt_1024: 
assert property( @(posedge link_clk) 

!(data_length > 'd1028)) 

else sva_link_error("The data payload is greater than 1024"); 

Figure 2.1 Prototype of USB3.0 link layer. 



then starts U1/U2 exit or U3 wakeup by responding 

with LFPS signal. This assertion belongs to “cover” 

group because other scenarios are possible. 

3. SYNTHESIS RESULTS
Synopsys’s Synplify Premier is used for synthesis. The 

synthesis is done for Virtex5 FPGA. Table 3.1 shows 

the utilized resources for each of the above described 

groups of assertions not including the logic for result 

retrieval.  The number of slice registers is 91% and the 

number of slice LUTs is 33% of USB3.0 link design. 

This utilization is not acceptable as we have 

implemented assertions for only three modules. If we  

implement all possible assertions, the resource 

overhead will be bigger than Device under Test 

(DUT). Assertions for RX and TX controllers can be 

included without any change. The main overhead is 

due to LTSSM assertions. 

4. USING PARTIAL

RECONFIGURATION TO SOLVE 

RESOURCE UTILIZATION ISSUE 

FPGA technology provides ability to modify design 

without going through re-fabrication. Partial 

Reconfiguration (PR) takes this flexibility one step 

further, allowing the modification of design during 

FPGA operation by loading a partial configuration file. 

After a full bit file configures the FPGA, partial bit 

files can be downloaded to modify reconfigurable 

regions in the FPGA without change of the 

applications running on those parts of the device that 

are not being reconfigured [4].  
The logic in the FPGA design is divided into two 

different types, reconfigurable and static logics. The 

USB3.0 link layer is implemented by static logic and 

the groups of assertions in each sub-module are 

implemented within reconfigurable region (Figure 

4.1). The static logic remains functioning and is 

completely unaffected by the loading of a partial bit 

file. The reconfigurable logic is replaced by the 

contents of the partial bit file. There are many reasons 

why the ability to time multiplex hardware 

dynamically on a single FPGA device is advantageous. 

One of the benefits of PR is the reduction of size of the 

FPGA device required to implement a given function, 

with consequent reductions in cost and power 

consumption. In addition to reducing size, weight, 

power and cost, Partial Reconfiguration enables new 

types of FPGA designs that are impossible to 

implement without it. The assertion can be divided 

into groups taking as criteria the state of USB3.0 link 

or the test when they are applied. There are assertions 

for SS.Disable, Rx.Detect, Polling, Recovery, U0 and 

power saving state (U1, U2 and U3). It is possible to 

create a partial bit file for assertions of these states and 

swap the content of reconfigurable regions during 

USB3.0 link connect phase or low power mode 

entry/exit. The size of the reconfigurable region should 

be equal to the size of the biggest assertion group. This 

approach requires very high reconfiguration speed to 

be able to swap the partial bit file during transition of 

USB3 link from one state to another, but is not 

possible to reach with JTAG configuration mode, 

which we are using for current prototype.  It is 

possible to do with different configuration modes 

which we are going to implement in future researches 

(e.g., embedding additional hardware to be able to do 

self-reconfiguration during operation). 

We have chosen the second approach to create groups 

of assertions. Before running every test partial bit file 

of test related assertions are loaded into reconfigurable 

part of the FPGA via JTAG interface. Test developer 

defines the set of assertions, which should be covered 

by the test. Table 4.1 shows resource utilization for 

low power mode test which includes 13 LTSSM, 2 TX 

and 2 RX assertions for U1/2/3 states plus the 

overhead of logic for result retrieval. 

Resources 
TX 

assertions 
RX 

assertions 
LTSSM 

assertions 
USB3.0 Link + PCS 

Slice Registers 214 195 2087 2715 

Slice LUTS 209 190 2036 7182 

RAMB18X2SDP - - - 1 

RAMB36_EXP - - - 5 

RAMB18X2 - - - 1 
Table 3.1 Utilized resources in Virtex5 (XC5VLX330T) FPGA 



CONCLUSION  

Table 4.1 shows resource utilization of assertions for 

single test. The FPGA resource overhead for low 

power mode test is less than 2%. Proposed 

methodology gives opportunity to implement all 

needed assertions not only for link layer but also for all 

other USB3.0 modules, interfaces for USB3.0 physical 

layer and other cores. Partial Reconfiguration of FPGA 

enables dynamic switching of test specific assertions 

during USB3.0 operation.  

In future research Internal Configuration Access Port 

(ICAP) controller will be implemented to 

automatically switch the content of reconfigurable 

parts of FPGA based on the state of USB3.0 

(operational mode -U0, low power mode-U1/2/3 etc.), 

which will reduce human intervention during hardware 

validation. 
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Figure 4.1 USB3.0 link prototype with reconfigurable regions 

Resources 
TX 

assertions 
RX 

assertions 
LTSSM 

assertions 
USB3.0 Link + PCS 

Slice Registers 27 29 132 2715 

Slice LUTS 23 16 202 7182 

RAMB18X2SDP - - - 1 

RAMB36_EXP - - - 5 

RAMB18X2 - - - 1 
Table 4.1 Results for low power mode test assertions. 
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