
Prototyping System for USB3.0 Link Layer Using Synthesizable Assertions

and Partial Reconfiguration

ABSTRACT
There are several researches, which identify the following

two problems as main bottlenecks of post-silicon validation:

bug detection/localization and coverage calculation.

Although FPGA prototyping is considered as pre-silicon

verification the coverage calculation and bug localization are

as much challenging as for post-silicon phase. This article

presents a novel approach to solve the above mentioned

issues by embedding synthesizable assertions into prototype.

The experiment has been performed on USB3.0 link layer

prototype. During the experiment all injected errors have

been successfully detected and functional coverage has been

calculated. The main drawback of the proposed approach is

unacceptable resource utilization which, was solved by

adding reconfigurable regions into FPGA. Synthesis results

are presented for group of assertions intended to test

entry/exit functionality of low power mode which show that

the FPGA resource overhead is less than 2% of USB3.0 link

prototype. This approach gives us ability to implement

USB3.0 design and all assertions for single test in one FPGA

with acceptable timing results and minor area overhead.

Keywords
Field Programmable Gate Array (FPGA), Partial
Reconfiguration (PR), Universal Serial Bus (USB), System
Verilog Assertion (SVA)

1. INTRODUCTION
 [1] presents the overview of post-silicon validation

problem and how it differs from traditional pre-silicon

verification and manufacturing testing. The following

challenges of post-silicon validation introduced in research

exist in FPGA prototyping: bug detection/localization and

coverage calculation.

Although there are multiple tools and methods for bug

detection provided by USB IF, there is a lack of bug

localization tools. Insufficient controllability and

observability due to limited access to internal signals during

prototyping is a bottleneck of fast bug detection and fixing.

Several methods exist for measuring pre-silicon coverage

including code coverage, Finite State Machine (FSM)

coverage, assertion coverage and mutation coverage (e.g.,

checking if the injected bug is caught during verification).

Although FPGA prototyping is considered as pre-silicon

verification, the coverage calculation is as much challenging

as for post-silicon. Most of researches try to find an

acceptable solution for this issue with respect to use of

resources [2]. Only few articles are related to coverage

measurement for FPGA prototyping. Some of the proposed

methodologies could be used for both cases. Performed

researches use only small group of assertions intended to test

corner cases or known issues and don’t take into account full

verification of digital core. As a result there is no data related

to resource utilization which is very important for

prototyping. As [7] suggests more than 70% utilization of

FPGA resources can cause performance issues.

Embedding synthesizable assertion into prototype could be

an effective solution for the above mentioned issues. The

article presents an approach for optimization of assertions to

solve the resource utilization issue by adding reconfigurable

regions into FPGA. All verification and coverage

calculations are done for USB3.0 link layer. The

synthesizable assertions are developed for transceiver (TX),

receiver (RX) and Link Training and Status State Machine

(LTSSM) sub-modules and for link interfaces (e.g., pipe

interface, which is used between USB3.0 link and physical

layers). The proposed approach can be used during FPGA

prototyping of any digital core and will facilitate error

detection/localization. The approach will make possible the

calculation of functional coverage for FPGA prototyping

which is a very important metric for quality of digital core.

2. USB3.0 LINK PROTOTYPE

ARCHITECTURE
The architecture of USB3.0 link layer prototype is

presented in Figure 2.1. Assertions are added for: TX

controller, RX controller, LTSSM and for

internal/external interfaces. These are most important

and error prone modules of USB3.0 link and most of

the scenarios described in [3] can be detected and

verified by monitoring processes within these

modules. Assertions for coverage and for checking

correct behavior are used. The first type is used for

coverage calculation as its name suggests. If the

expected scenario does not happen after the start of

assertion the state of the first type becomes IDLE and

status “Not covered”. The second type is used to detect

the protocol or other functional violations, therefore, if

the expected scenario doesn’t happen the state of

assertion becomes “ERROR”. This assertions match

with “cover” and “assert” statements in SystemVerilog

Assertion (SVA) language. In the following sections

only two assertions are presented for each module (one

for “assert” type and one for “cover” type) because of

size limitations.

Harutyun, Krrikyan

Synopsys Armenia CJSC

Yerevan, Armenia

e-mail: harutk@synopsys.com

Taron, Hovhannisyan

Synopsys Armenia CJSC

Yerevan, Armenia

e-mail: taronhov@synopsys.com

Sergey, Manukyan

Synopsys Armenia CJSC

Yerevan, Armenia

e-mail: msergey@synopsys.com

2.1 TX CONTROLLER ASSERTIONS
The number of developed assertions for coverage is 34

and there are 6 assertions used as checker for this

module. First one is used to check if the length of a

packet payload is not greater than 1024. It is “assert”

type and will fail if data length is greater than 1024.

The implementations of synthesizable RTL for these

assertions are straightforward and is not presented

here.

This assertion checks whether the port has “Loopback

Master Capability” and is directed to go to Loopback.

If so then it transmits identical TS2 ordered sets with

the Loopback bit set upon entry to Recovery-

>Configuration.

2.2 RX CONTROLLER ASSERTIONS
The number of developed assertions for coverage is 31

and there are 5 assertions used as checker for this

module. First one checks whether the port receiving a

header packet sends an LBAD when after a valid

HPSTART is detected and any K-symbol occurrence

or any 8b/10b error is detected. This assertion is

implemented as an assert type because according to

protocol the link must respond with LBAD when there

is a CRC5 error in link control work. Not doing so will

cause a loss of data or corrupted packet header will be

treated as correct.

The second assertion checks the scenario when one of

end packet payload framing symbols is corrupted. As

[5] states if one of four framing symbols is corrupted

the link partner still must be able to recognize the end

payload framing. This type of scenarios must be

verified during hardware validation and this assertion

can be used to check whether it is covered.

2.3 LTSSM ASSERTIONS

These assertions check whether the behavior of the

LTSSM is according specification and if different

functionalities are covered. The number of developed

assertions for coverage is 332 and there are 12

assertions used as checker for this module. The first

assertion checks if the link error counter is nullified

after reset. This belongs to “assert” group because [5]

defines that reset is one of the conditions when error

count should become zero.

The second assertion checks if port upon receiving

U1/U2 EXIT or U3 wakeup LFPS handshake signal,

sequence reset_link_error_cnt_after_reset; @(posedge link_clk)

ltmcs_link_err_ctr!=0
##1 !link_reset_n

##1 link_reset_n [->1]

##1 ltmcs_link_err_ctr==0;

endsequence

sequence dpp_endf_err_1; @(posedge mac3_clk)

(dpp_length[1:0] != 2'h0) ##1 (dpp_length[1:0] == 2'h0) ##0

(pkt_state == DPP_XFR)
 ##0 (match4(pkt_window_9b, {EPF, END, END, END}) == 3)

 ##1 ({lnmcr_data_last, lnmcr_data_err} == 2'b10);

endsequence
svc_u3link_rpkt_dpp_endf_err_1:

cover property (dpp_endf_err_1)

sequence CRC5_error_TxLBAD_recovery; @(posedge mac3_clk)

(pkt_state != HDR3) ##1 (pkt_state == HDR3) ##0 !crc5_ok
##1 que_lbad

##1 replay_wait

##1 (lt_link_state == RECOV) [->1]
##0 replay_wait;

endsequence

svc_u3link_rpkt_CRC5_error_TxLBAD_recovery: assert property

(CRC5_error_TxLBAD_recovery)

sequence RecovConfg_TxTS2_SetLPBK; @(posedge link_clk)

(lt_link_state != RECOV) ##1 (lt_link_state == RECOV)

##1 (tx_state == TS_BLK) [->1]
##1 lndb_lpbken;

endsequence

svc_u3link_tctrl_RecovConfg_TxTS2_SetLPBK: cover

property (RecovConfg_TxTS2_SetLPBK)

sva_u3link_tctrl_data_gt_1024:
assert property(@(posedge link_clk)

!(data_length > 'd1028))

else sva_link_error("The data payload is greater than 1024");

Figure 2.1 Prototype of USB3.0 link layer.

then starts U1/U2 exit or U3 wakeup by responding

with LFPS signal. This assertion belongs to “cover”

group because other scenarios are possible.

3. SYNTHESIS RESULTS
Synopsys’s Synplify Premier is used for synthesis. The

synthesis is done for Virtex5 FPGA. Table 3.1 shows

the utilized resources for each of the above described

groups of assertions not including the logic for result

retrieval. The number of slice registers is 91% and the

number of slice LUTs is 33% of USB3.0 link design.

This utilization is not acceptable as we have

implemented assertions for only three modules. If we

implement all possible assertions, the resource

overhead will be bigger than Device under Test

(DUT). Assertions for RX and TX controllers can be

included without any change. The main overhead is

due to LTSSM assertions.

4. USING PARTIAL

RECONFIGURATION TO SOLVE

RESOURCE UTILIZATION ISSUE

FPGA technology provides ability to modify design

without going through re-fabrication. Partial

Reconfiguration (PR) takes this flexibility one step

further, allowing the modification of design during

FPGA operation by loading a partial configuration file.

After a full bit file configures the FPGA, partial bit

files can be downloaded to modify reconfigurable

regions in the FPGA without change of the

applications running on those parts of the device that

are not being reconfigured [4].
The logic in the FPGA design is divided into two

different types, reconfigurable and static logics. The

USB3.0 link layer is implemented by static logic and

the groups of assertions in each sub-module are

implemented within reconfigurable region (Figure

4.1). The static logic remains functioning and is

completely unaffected by the loading of a partial bit

file. The reconfigurable logic is replaced by the

contents of the partial bit file. There are many reasons

why the ability to time multiplex hardware

dynamically on a single FPGA device is advantageous.

One of the benefits of PR is the reduction of size of the

FPGA device required to implement a given function,

with consequent reductions in cost and power

consumption. In addition to reducing size, weight,

power and cost, Partial Reconfiguration enables new

types of FPGA designs that are impossible to

implement without it. The assertion can be divided

into groups taking as criteria the state of USB3.0 link

or the test when they are applied. There are assertions

for SS.Disable, Rx.Detect, Polling, Recovery, U0 and

power saving state (U1, U2 and U3). It is possible to

create a partial bit file for assertions of these states and

swap the content of reconfigurable regions during

USB3.0 link connect phase or low power mode

entry/exit. The size of the reconfigurable region should

be equal to the size of the biggest assertion group. This

approach requires very high reconfiguration speed to

be able to swap the partial bit file during transition of

USB3 link from one state to another, but is not

possible to reach with JTAG configuration mode,

which we are using for current prototype. It is

possible to do with different configuration modes

which we are going to implement in future researches

(e.g., embedding additional hardware to be able to do

self-reconfiguration during operation).

We have chosen the second approach to create groups

of assertions. Before running every test partial bit file

of test related assertions are loaded into reconfigurable

part of the FPGA via JTAG interface. Test developer

defines the set of assertions, which should be covered

by the test. Table 4.1 shows resource utilization for

low power mode test which includes 13 LTSSM, 2 TX

and 2 RX assertions for U1/2/3 states plus the

overhead of logic for result retrieval.

Resources
TX

assertions
RX

assertions
LTSSM

assertions
USB3.0 Link + PCS

Slice Registers 214 195 2087 2715

Slice LUTS 209 190 2036 7182

RAMB18X2SDP - - - 1

RAMB36_EXP - - - 5

RAMB18X2 - - - 1
Table 3.1 Utilized resources in Virtex5 (XC5VLX330T) FPGA

CONCLUSION

Table 4.1 shows resource utilization of assertions for

single test. The FPGA resource overhead for low

power mode test is less than 2%. Proposed

methodology gives opportunity to implement all

needed assertions not only for link layer but also for all

other USB3.0 modules, interfaces for USB3.0 physical

layer and other cores. Partial Reconfiguration of FPGA

enables dynamic switching of test specific assertions

during USB3.0 operation.

In future research Internal Configuration Access Port

(ICAP) controller will be implemented to

automatically switch the content of reconfigurable

parts of FPGA based on the state of USB3.0

(operational mode -U0, low power mode-U1/2/3 etc.),

which will reduce human intervention during hardware

validation.

REFERENCES
[1] Mitra, Subhasish, Sanjit A. Seshia, and Nicola Nicolici.

"Post-silicon validation opportunities, challenges and recent

advances". In Proceedings of the 47th Design Automation

Conference, pp. 12-17. ACM, 2010.

[2] Karimibiuki, Mehdi, Kyle Balston, Alan J. Hu, and

Andre Ivanov. "Post-silicon code coverage evaluation with

reduced area overhead for functional verification of SoC"

In High Level Design Validation and Test Workshop

(HLDVT), pp. 92-97, IEEE 2011.

[3] Universal Serial Bus 3.0 Link Layer Test Specification.

August 2, 2013, www.usb,org

[4] Partial Reconfiguration User Guide (v14.5) April 26,

2013, www.xilinx.con

[5] USB3.1 specification July 26, 2013, www.usb.org

[6] F. I. Haque, J. Michelson, K. A. Khan. The Art of

Verification With SystemVerilog Assertions, Verification

Central, Fermont California 2006.

[7] D. Amos, A. Lesea, R. Richter. FPGA-Based Prototyping

Methodology Manual, Synopsys Inc. 2011.

Figure 4.1 USB3.0 link prototype with reconfigurable regions

Resources
TX

assertions
RX

assertions
LTSSM

assertions
USB3.0 Link + PCS

Slice Registers 27 29 132 2715

Slice LUTS 23 16 202 7182

RAMB18X2SDP - - - 1

RAMB36_EXP - - - 5

RAMB18X2 - - - 1
Table 4.1 Results for low power mode test assertions.

http://www.usb,org/
http://www.xilinx.con/
http://www.usb.org/
http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Faisal+Haque&search-alias=books&text=Faisal+Haque&sort=relevancerank
http://www.amazon.com/Jonathan-Michelson/e/B00IVDN5LY/ref=dp_byline_cont_book_2
http://www.amazon.com/Khizar-Khan/e/B00IVDMC6I/ref=dp_byline_cont_book_3

