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ABSTRACT
We study secrecy E-capacity region of a discrete memo-
ryless multiple access channel with two confidential mes-
sages (DM-MACC). Two users transmit messages to a
receiver while both users also receive the channel out-
puts but messages from each source must be in perfect
secrecy with respect to the other source. The level of
ignorance is measured by the equivocation rate. Secrecy
E-capacity region is the set of rate pairs R1, R2 of codes
with given error probability exponent (reliability) E at
the receiver. The random coding bound for secrecy E-
capacity region of the DM-MACC is determined.

Keywords
Error probability exponent, Multiple access channel, Se-
crecy E-capacity.

1. INTRODUCTION
In this paper, we study a two-user discrete memoryless
multiple access channel with two confidential messages
(DM-MACC). The system involves two sources, two en-
coders, one receiver. Two users transmit messages to a
receiver while both users also receive the channel out-
puts. Hence, they may eavesdrop the transmitted mes-
sages from the other source. We assume that the trans-
mitters are passive eavesdroppers (Fig. 1). The confi-
dential message from every source must be transmitted
through the channel while ensuring the eavesdropping
user at another source to be kept in total ignorance
of it. Shannon described the information-theoretic se-
curity approach in communications [1]. The wiretap
channel was investigated by Wyner [2], where the chan-
nel from the transmitter to the legitimate receiver and
the eavesdropper was a degraded broadcast channel.
Csiszár and Körner [3] studied the security of communi-
cation for the broadcast channel considering confidential
messages. We may refer the reader to [4] wherein vari-
ous problems and results in secure communications for
multi-user systems are discussed. Liang and Poor ob-
tained the capacity bounds of the general multiple ac-
cess channel where the users attempt to transmit com-
mon information to a destination and each user also has
a confidential message [4].

Shannon proposed to study error probability exponent
of code in [5] and introduced the concept of reliability-
rate function E(R), which defines the optimal exponent
of the exponential decrease of the decoding error prob-

ability for the given rate R when the code length N
increases. Bounds of average and maximal error proba-
bility exponent for discrete memoryless multiple access
channel without secrecy constraint were studied in [6].
The rate-reliability function (E-capacity) R(E) is in-
verse to the reliability-rate function E(R) [7]. The E-
capacity presents optimal dependence of the code rate
R upon reliability E. It is also a generalization of Shan-
non’s channel capacity. When E → 0, the E-capacity
tends to the channel capacity. Estimates of the E-
capacity for different models of multiple access channel
were studied in [8].

In this paper, we consider one exponent E for decod-
ing error probability at the destination (the legitimate
receiver) and determine an inner bound for secrecy E-
capacity region of the DM-MACC, under the require-
ment that the eavesdropping user is kept in total ig-
norance of the confidential messages. The constructed
region is on average error probability. The level of se-
crecy is measured by equivocation rate, which is the
level of uncertainty of eavesdropping user.
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Figure 1: The model of discrete memoryless mul-

tiple access channel with two confidential messages

2. PRELIMINARIES
The DM-MACC is with input alphabets X1 and X2, and
output alphabets Y, Y1, Y2 correspondingly, on the le-
gitimate receiver and eavesdropping users. The vectors
x1 ∈ XN

1 and x2 ∈ XN
2 are the inputs, y ∈ YN is

the output vector after N uses of channels. The vector
yi ∈ YN

i is the channel output at the eavesdropping
user, i = 1, 2. M1,N and M2,N are the message sets
at the first and the second sources, respectively. We
introduce some additional finite sets U1 and U2. The
DM-MACC is characterized by the conditional PDs,
WY |X1,X2

, WY1|X1,X2
and WY2|X1,X2

and by products
for N uses of the channel

WN
Y |X1,X2

(y|x1,x2) =

N∏
n=1

WY |X1,X2
(yn|x1,n, x2,n)),



WN
Yi|X1,X2

(yi|x1,x2) =

N∏
n=1

WYi|X1,X2
(yi,n|x1,n, x2,n)),

i = 1, 2.

Messages m1 ∈ M1,N , m2 ∈ M2,N should be trans-
mitted to the receiver while ensuring the message mi to
be kept secret from the user 3 − i, i = 1, 2. The level
of secrecy is measured by the equivocation rate at the
eavesdropping user.

A stochastic encoder fi is specified by conditional prob-
abilities fi(xi|mi), where xi ∈ XN

i , mi ∈ Mi,N and∑
xi

fi(xi|mi) = 1, i = 1, 2.

A code is a triple (f1, f2, g), where f1 and f2 are stochas-
tic encoders and g : YN → M1,N ×M2,N is a determin-
istic decoder for legitimate receiver. A code (f1, f2, g)
is characterized also by coding rates (R1, R2). The level
of ignorance of eavesdropper at user i rather than the
confidential message m3−i is measured by equivocation
rate 1

N
H(M3−i,N |Yi,Xi).

The average probability of error of the code (f1, f2, g)
is

e(f1, f2, g, WY |X1,X2
)

△
= (|M1| × |M2|)−1∑

m1∈M1,N ,m2∈M2,N

Pr
{
(g−1(m1,m2))

c
∣∣m1, m2

}
. (1)

A rate pair (R1, R2) is called E-achievable for the DM-
MACC if there exists a sequence of codes such that the
following conditions are valid:

lim
N→∞

1

N
log |Mi,N | = Ri, i = 1, 2, (2)

the reliability requirement

e(f1, f2, g, WY |X1,X2
) ≤ exp{−NE}, (3)

and the secrecy constrains

lim inf
N→∞

1

N
H(Mi,N |Y3−i,X3−i) ≥ Ri, i = 1, 2. (4)

Secrecy E-capacity region Rs(E) for average error prob-
ability is defined as the set of all E-achievable rates
(R1, R2). In the next section, we construct a random
coding bound Rr

s(E) for secrecy E-capacity Rs(E). To
this end, we apply the method of types [9]. For the
definitions and properties of type and conditional type
and definitions of mutual information and Kullback-
Leibler’s divergence we refer to [8], [9].

3. MAIN RESULT
Let U0 → (X1, X2) → Y be a Markov chain. We con-
sider the following distributions

PU0 = {PU0(u0), u0 ∈ U0},

P = {P (u0, x1, x2) = PU0(u0)PX1,X2|U0
(x1, x2|u0),

u0 ∈ U0, x1 ∈ X1, x2 ∈ X2},

V = {VY |X1,X2
(y|x1, x2), x1 ∈ X1, x2 ∈ X2, y ∈ Y},

P◦V = {PU0(u0)PX1,X2|U0
(x1, x2|u0)VY |X1,X2

(y|x1, x2),

u0 ∈ U0, x1 ∈ X1, x2 ∈ X2, y ∈ Y}.

The marginal distributions are defined as follows:

P ∗
i (xi|u0) =

∑
x3−i

PX1,X2|U0
(x1, x2|u0),

P ∗
i = {P ∗

i (xi|u0), xi ∈ Xi}, i = 1, 2,

and

P ∗ = {PU0(u0)P
∗
1 (x1|u0)P

∗
2 (x2|u0),

u0 ∈ U0, x1 ∈ X1, x2 ∈ X2}.

The following notations of mutual information and di-
vergence are adopted from [8]

IP,V (X1 ∧X2 ∧ Y |U0) = HP∗
1
(X1|U0) +HP∗

2
(X2|U0)

+HP,V (Y |U0)−HP,V (Y,X1, X2|U0) =

= IP,V (X1,X2 ∧ Y |U0) + IP (X1 ∧X2|U0),

and

D(P ◦ V ∥P ∗ ◦W ) = D(P∥P ∗) +D(V ∥W |P ).

Let us define the following region of rates R1, R2:

0 ≤ R1 ≤ min
P,V :D(P◦V ∥P∗◦W )≤E

|IP,V (X1 ∧X2, Y |U0)

+D(P ◦V ∥P ∗◦W )−E|+−IP,WY2|X1,X2
(X1∧Y2|X2, U0),

(5)
0 ≤ R2 ≤ min

P,V :D(P◦V ∥P∗◦W )≤E
|IP,V (X2 ∧X1, Y |U0)

+D(P ◦V ∥P ∗◦W )−E|+−IP,WY1|X1,X2
(X2∧Y1|X1, U0),

(6)
R1 +R2 ≤ min

P,V :D(P◦V ∥P∗◦W )≤E
|IP,V (X1 ∧X2 ∧ Y |U0)

+D(P ◦V ∥P ∗◦W )−E|+−IP,WY2|X1,X2
(X1∧Y2|X2, U0)

−IP,WY1|X1,X2
(X2 ∧ Y1|X1, U0), (7)

and the inner boundRr
s(E) of secrecy E-capacity region

Rs(E) as follows

Rr
s(E) =

∪
P∗

{(R1, R2) : (5) - (7) take place for joint PD

PU0 ◦ PX1,X2|U0
◦ VY |X1,X2

}. (8)

Theorem 1. For all E > 0,

Rr
s(E) ⊆ Rs(E).

To prove the theorem we must show that there exists
a code C such that for each δ > 0 and N large enough
with

|Mi,N | =

exp{N [IP,V (X1 ∧X2, Y |U0) +D(P ◦ V ∥P ∗ ◦W )

−E − IP,WYi|X1,X2
(X1 ∧ Y2|X2, U0)− δ/2]},

i = 1, 2,

condition (3) holds and equivocation rates satisfy (4).
The analysis of error probability is similar to that of
MAC without secrecy constraint in [8] and the estima-
tion of the equivocation rate is similar to that of [4].



Remark. Let E → 0 in (8). If we set Ui = Xi, i = 1, 2,
and M0 = 1 in the generalized multiple access chan-
nel with confidential messages in [4], the random cod-
ing bound for secrecy E-capacity region Rr

s(E) (8) con-
verges to the secrecy rate region in [4, Corollary 6.3].
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