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ABSTRACT
The aim of this paper is to present a generalization
of the classical Neyman-Pearson Lemma to the case of
more than two simple hypotheses.
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1. INTRODUCTION
The principle of Neyman-Pearson plays a central role
in both the theory and practice of statistics, because
the Neyman-Pearson lemma is an important base of the
mathematical theory of statistical hypothesis testing.

We call the statistical hypothesis each supposition state-
ment which must be verified concerning the probability
distribution of an observable random object. The task
of statistician is to construct an algorithm (test) for
effective detection of the hypothesis which is realized.
The decision must be made on the base of vector (called
a sample) of results of N independent identically dis-

tributed experiments, denoted by x
4
= (x1, ..., xn, ..., xN ),

the elements of XN , where X is the space of possible re-
sults of each experiment.

There exists a vast literature where the theory of the
hypothesis testing and the Neyman-Pearson lemma are
expounded in detail [1]–[9]. The paradigm of Neyman-
Pearson is frequently used in different applications [10]–
[12]. But the most part of these texts is dedicated to
the case of two hypotheses.

Since the testing of multiple hypothesis is actual in ap-
plications we present a version of the Lemma for the
case of three, or more hypotheses.
The concept of this study was formulated in [13].

It deserves to mention that the idea of consideration of
exponential increase of error probabilities for all pairs
of hypotheses amongst a known number of them was
proposed and published in [15]–[18], and then developed
for different models (see [19]–[24]).

2. PROBLEM STATEMENT AND RESULT
FORMULATION

Let P(X ) be the space of all probability distributions
(PDs) on X . Let X be RV taking values in X with

one of M PDs Gm ∈ P(X ), m = 1,M . Let the sample
x = (x1, ..., xn, ..., xN ), xn ∈ X , n = 1, N , be a vector
of results of N independent observations of X.

Based on data sample a statistician makes a decision
which of the proposed hypotheses Hm : G = Gm, m =
1,M , is correct.

The procedure of decision making is a non-randomized
test ϕN (x), it can be defined by division of the sample
space XN on M disjoint subsets Am, m = 1,M . The
set Am, m = 1,M consists of vectors x for which the
hypothesis Hm is adopted.

We study the probabilities of the erroneous acceptance
of hypothesis Hl provided that Hm is true

αl|m(ϕN )
4
= Gm(Al) =

∑
x: x∈Al

Gm(x),

m, l = 1,M, m 6= l.

If the hypothesis Hm is true, but it is not accepted then
the probability of error is the following:

αm|m(ϕN )
4
=
∑
l:l 6=m

αl|m(ϕN ) = 1−Gm(Am), m = 1,M.

As it was noted in [8] the case N = 1 ”contains the
general one and there is no need to restrict attention to
independent drawings”.

For the given preassigned values
0 < α∗1|1, α

∗
2|2, ...., α

∗
M−1|M−1 < 1 we choose the num-

bers T1, T2, ..., TM−1 and the sets Am, m = 1,M , such
that

A∗1 =

{
x : min

(
G1(x)

G2(x)
, ...,

G1(x)

GM (x)

)
> T1

}
,

1−G1(A∗1) = α∗1|1,

A∗2 = A∗1 ∩
{
x : min

(
G2(x)

G3(x)
, ...,

G2(x)

GM (x)

)
> T2

}
,

1−G2(A∗2) = α∗2|2,

........................................................................................

A∗M−1 = A∗1∩A∗2∩...∩A∗M−2∩
{
x :

GM−1(x)

GM (x)
> TM−1

}
,

1−GM−1(A∗M−1) = α∗M−1|M−1,

and

A∗M = XN−(A∗1∪A∗2∪...∪A∗M−1) = A∗1∩A∗2∩...∩A∗M−1.



The corresponding error probabilities are denoted by

α∗l|m(ϕN ), m, l = 1,M − 1.

Theorem: The test determined by the sets A∗1, A∗2,
....., A∗M is optimal in the sense that, for each other test
defined by the set B1, B2, ...., BM with the corresponding
error probabilities βl|m, m, l = 1,M ,

if βm|m ≤ α∗m|m, for any m = 1,M − 1,

then there exists at least one index j, j ∈ [m + 1,M ]
such that

βm|j ≥ α∗m|j .

Proof: Let ΦA∗
m

and ΦBm be the indicator functions
of the decision regions A∗m and Bm. For all
x = (x1, x2, ..., xN ) ∈ XN , the following inequality is
correct

(ΦA∗
m

(x)− ΦBm(x)) (Gm(x)−

−max(TmGm+1(x), ..., TmGM (x))) ≥ 0.

Multiplying and then summing over XN we obtain∑
x: x∈XN

[
ΦA∗

m
(x)Gm(x)−

−ΦA∗
m

(x) max(TmGm+1(x), TmGM (x))−ΦBm(x)Gm(x)

+ ΦBm(x) max(TGm+1(x), ..., TmGM (x))] ≥ 0,∑
x: x∈A∗

m

[Gm(x)− Tm max(Gm+1(x), ..., GM (x))]−

−
∑

x: x∈Bm

[Gm(x)− T1 max(Gm+1(x), ..., GM (x))] ≥ 0,

According to the definition of error probability we ob-
tain the following:

1− α∗m|m − Tm max(α∗m|m+1, ..., α
∗
m|M )

−(1− βm|m) + Tm max(βm|m+1, ..., βm|M ) ≥ 0,

−βm|m + α∗m|m ≤ Tm[−max(α∗m|m+1, ..., α
∗
m|M )

+ max(βm|m+1, ..., βm|M )].

We see now that from βm|m ≤ α∗m|m, it follows that

max(βm|m+1, ..., βm|M ) ≥ max(α∗m|m+1, ..., α
∗
m|M ).

From this it follows that if the maximal is βm|j , j ∈
[m+ 1,M ] then βm|j ≥ α∗m|j .

The theorem is proved.

3. CONCLUSION
In this paper we generalized Neyman-Pearson criterion
of optimality to the case of many continuous hypotheses.

Bayesian testing was considered for the case of two and
more hypotheses in [3], [4], [25], [26]. It is desirable to
consider multyhypotheses Bayesian optimal testing for
the models consisting of many objects.
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