
Performance Penalty Detection in MPI Applications

Manuk, Akopyan

Institute for system programming
Moscow, Russian Federation

e-mail: manuk@ispras.ru

ABSTRACT
Most of the developed tools for analysis of various libraries
(MPI, OpenMP) and languages for parallel programming use
low level approaches to analyze the performance of parallel
applications (profilers, trace visualizers). In most cases the
developer has to manually look for bottlenecks and
opportunities for performance improvement in the produced
runtime data. The amount of information developer has to
handle manually increase dramatically with number of cores,
number of processes and the problem size of application.
Therefore, new methods of automated performance analysis
of output information will be more favorable. In this paper
code patterns resulting in performance penalties are
discussed. Patterns of parallel MPI applications for parallel
computing systems with distributed memory are considered.
A method for automatic detection of inefficiency patterns in
parallel MPI-1 applications and UPC programs is proposed.
It allows to reduce the tuning time of a parallel application
and improve the productivity of parallel program
development.

Keywords
parallel programming, semantic errors, inefficiency patterns,
MPI, UPC

1. INTRODUCTION
Most of the developed performance analysis tools for
different libraries and languages of parallel programming use
low-level approaches to performance analysis of parallel
programs. Mostly, those are profiling utilities or traces
visualizers. As a result of the analysis programmer receives
tables and graphs with program execution statistics. This
information does not give a clear view of possible troubles
and bottlenecks of application. Developer looks through
graphs manually searching for program slowdown and
possible optimization capabilities. Given the fast growth of
number of cores in modern high-performance computing
systems, the amount of data the programmer has to process
becomes unacceptably large and manual analysis methods
become inapplicable. Therefore, new methods of
performance analysis implementing full or partial
automatization of obtained data processing are required for
parallel applications in modern environment.

Under this research a method of automated detection of
inefficiency patterns in parallel MPI [1] applications and
UPC [2] programs has been developed. In this paper terms
performance error and inefficiency pattern would be used
interchangeably. Patterns of inefficient usage of MPI-1 p2p
functions are discussed. As long as MPI is an industrial
standard for parallel programs with distributed memory, this
article discusses a method for detection of performance
errors mostly in MPI programs. The method is based on the
analysis of data obtained during the parallel program
execution (post-mortem analysis). Description of patterns for
programs using MPI is given in the paper.

The paper is organized as follows. Section 2 discusses some

related works. Section 3 describes the proposed method of
automated error detection in parallel MPI and UPC
applications and performance error types for these
programming models. Finally, section 4 concludes the paper
by summarizing the main points addressed through this
paper.

2. RELATED WORKS
One of the most known systems for parallel applications
performance improvement is TAU [3]. TAU is a toolkit for
parallel programs performance analysis and was developed
by researchers from the Oregon University, National
laboratory of Los Alamos and Juelich research center
(Germany). TAU provides a set of static and dynamic tools,
which through interaction with the user perform a complex
analysis of parallel applications in Fortran, C, C++, Java and
Python. tools for automated instrumentation are also
developed within TAU. Hercule [4] tool of the TAU system
is a prototype of module which uses knowledge base to
detect and find out causes of performance bottlenecks in
accordance with programming paradigm (such as master-
worker, pipeline, etc.) instead of programming model (MPI,
OpenMP). Hercule allows analyzing the applications written
in any of programming models. However this tool cannot
process the applications developed using combination of
different paradigms.

The PPW system [5] was developed in the HCS (High-
performance Computing and Simulation) laboratory of the
Florida University. The system was created to analyze
performance of parallel PGAS program (in particular UPC
and SHMEM programs). At first, the program is
instrumented and run. As a result of instrumented program
run a program profile (statistical data of execution time) and
trace (trace is created in its own format) are gathered. The
gathered data can be used for parallel program analysis and
bottlenecks detection. Also, there are convertors of program
trace to popular formats. That allows users to apply well
known visualization tools (Vampir, JumpShot, etc.) for
manual optimization. PPW is an actively developed package
with a graphical user interface and rich functionality.
However methods underlying the package are low-level and
do not use automated approaches to analysis.

The Scalasca [6] system is a toolkit designed for
performance analysis and was developed especially for using
on large systems with tens of thousands of cores, but it also
has proved its worth for small and medium HPC platforms.
Scalasca supports measurement and analysis of MPI and
OpenMP syntax constructions as well as hybrid
programming constructions widely used in HPC applications
written in C, C++, Fortran. The system was developed in the
Julich Supercomputing Centre and the German Research
School for Simulation Sciences. At first, parallel application
is instrumented. On launch each process creates a trace file,
containing records for local events of the given process.
After the completion of parallel program execution, Scalasca
allows to perform a post-mortem analysis of trace events.
First, local traces of processes are merged in a single trace.

For clock synchronization of different processes the method
described in [7] is used. After merging of local traces in a
global one, EXPERT tool [8, 9] can be used for inefficiency
patterns detection. The EXPERT sequentially scans events in
the global trace and looks for predefined patterns included in
system distributive. Only terminal events (SEND, RECV,
etc.) can be met in the trace. Each event contains timestamp
among other properties. A pattern is a combination of
terminal events matching certain predicates. About 30
patterns for MPI, OpenMP and SHMEM programs are
defined in the system.

At this moment there are no toolkits supporting the
development of parallel applications and automatically
detecting performance errors in MPI and UPC programs.
Existing systems allow looking for errors manually or do not
cover the necessary error types for MPI and UPC
applications.

3. AUTOMATED PERFORMANCE
ERROR DETECTION

3.1. Method description
In this paper errors of MPI functions usage leading to
parallel applications performance loss and inefficiency
patterns will be considered as equals. Method of automated
detection of inefficiency patterns in parallel programs is
based on the analysis of data obtained during the parallel
program execution in data gathering mode (post-mortem
analysis). To automatically detect patterns first we need to
obtain execution time data on critical functions potentially
leading to patterns of certain types. After that, analysis of
gathered data is performed in order to detect these patterns.
The developed approach is based on usage of open source
libraries of the Scalasca [6].

Therefore, the method for automated detection of
inefficiency patterns in parallel programs consists of the
following stages:
Stage 1. Gathering the runtime data of parallel program.
Stage 2. Analysis of the data obtained at the Stage 1 and
detection of patterns in parallel program.
Stage 3. Creation of report on detected errors with binding to
parallel program source code.

Building the trace of parallel application includes
instrumentation stage and execution of instrumented
program on target platform. Program instrumentation means
adding calls to instrumental library in certain positions of the
original program. During the program execution these calls
register a certain event and make a record in trace. After that
the instrumented program is transferred onto target platform
and a parallel program is launched. As a result a trace is
created for each process of the program.

At the second stage after the event trace is obtained a post-
mortem analysis is performed – trace of parallel program is
analyzed in order to detect certain errors. Certain criterion
corresponds to each pattern - predicate of event timestamp,
timestamp of corresponding paired event, etc. To detect
patterns, events from trace are looked over and
corresponding pattern is registered on certain predicate
execution.

At the third stage the gathered data is sent to report
generator, which creates a final report in convenient format.
The final report contains a list of error descriptors.

The developed method is applicable to detection of
performance errors in both MPI and UPC applications.

3.2. Error types description in MPI-
programs
Let’s look upon patterns when using point to point
communications in parallel MPI-programs. Let F represent
the MPI communication function. We’ll define the reference
time right before the F function as Time_start(F).
Time_end(F) is a timestamp for event after the F function.
I_T(pid, pi, cj) will indicate idleness time of process with pid
identifier as a result of communication cj={sendId,recvId}
caused by detection of error pi. sendId and recvId represent
sending and receiving identifiers correspondingly. Let ε be
the threshold value.

3.2.1 Blocking point-to-point
communication patterns
During message transfer from one process to another, idle
state may occur on one or another side. This effect does not
affect computation correctness but it will have a negative
impact on program execution speed. Removing those idle
states (when possible) will lead to performance improvement
of parallel program.

«Early standard send». Let’s look at the situation when
sending occurs earlier than receiving (fig. 1). In this case
sender process loses time. Pattern criteria:

0
otherwise ,(MPI_Send)Time_start-(MPI_Recv)Time_start

) (MPI_Send)Time_start-)t(MPI_Recv(Time_star if ,0
)c ,p I_T(pid, ji >

 <

=
ε

Fig. 1. Early send with MPI_Send.

We must also take into account MPI implementation features
(also mentioned in MPI standard). If forward sending
protocol has been used in implementation of MPI library
(e.g. MPICH [10], MPICH2, MVAPICH [11],
MVAPICH2,…), then call to function MPI_Send could be
local (non-blocking) if the size of sending message is less
then the predefined constant. Therefore sender will not
become idle and we must exclude this case during the pattern
search process.

«Early buffered send». Message sending begins earlier than
corresponding receiving. However in this case the sender
process is not idle because the MPI_Bsend function is local –
the function copies the message into buffer and returns
control to the program and the MPI runtime system sends the
message from buffer.

«Early synchronous send». This pattern is similar to the
«Early standard send», but MPI_Ssend is used instead of
MPI_Send. Pattern criteria:

0
else ,)(MPI_SsendTime_start - (MPI_Recv)Time_start

))(MPI_SsendTime_start -)t(MPI_Recv(Time_star if ,0
)c ,p I_T(pid, ji >

 <

=
ε

«Early ready send». This pattern is similar to «Early
standard send», but MPI_Rsend is used instead of
MPI_Send. Pattern criteria:

>
<

= 0
else ,)(MPI_RsendTime_start - (MPI_Recv)Time_start

))(MPI_RsendTime_start -)t(MPI_Recv(Time_star if ,0
)c ,p I_T(pid, ji

ε

«Late standard send». Let’s look at the situation when
receiving occurs earlier than sending (fig. 2). In this case
receiver process loses time. Pattern criteria:

>
<

= 0
otherwise ,(MPI_Recv)Time_start-(MPI_Send)Time_start

) (MPI_Recv)Time_start-)t(MPI_Send(Time_star if ,0
)c ,p I_T(pid, ji

ε

Fig. 2. Early receive with MPI_Send.

«Late buffered send». This pattern is similar to the «Late
standard send», but MPI_Bsend is used instead of
MPI_Send. Pattern criteria:

>
<

= 0
else , (MPI_Recv)Time_start-)(MPI_BsendTime_start

) (MPI_Recv)Time_start-d)t(MPI_Bsen(Time_star if ,0
)c ,p I_T(pid, ji

ε

«Late synchronous send». This pattern is similar to the
«Late standard send», but MPI_Ssend is used instead of
MPI_Send. Pattern criteria:

>
<

= 0
else , (MPI_Recv)Time_start-)(MPI_SsendTime_start

) (MPI_Recv)Time_start-d)t(MPI_Ssen(Time_star if ,0
)c ,p I_T(pid, ji

ε

«Late ready send». This pattern is similar to the «Late
standard send», but MPI_Rsend is used instead of
MPI_Send. Pattern criteria:

>
<

= 0
else , (MPI_Recv)Time_start-)(MPI_RsendTime_start

) (MPI_Recv)Time_start-d)t(MPI_Rsen(Time_star if ,0
)c ,p I_T(pid, ji

ε

3.2.2 «Message misarrangement» patterns
Effect of «message misarrangement» may occur when
receiver process awaits messages in one sequence and sender
process sends messages in another order. By rearranging
messages we will not only speed up the program but will
also need less buffer size for unprocessed messages storing.
If during send-receive the rendezvous protocol is used, the
program will obviously go to deadlock. But if send is local
(buffered send or standard send with short message size and
MPI implementation send message through internal buffer)
there will be no blocking, but an ineffective communications
arrangement instead.

«Misarrangement with the use of MPI_Send». Fig. 3.
represents a graphical view of inefficiency pattern during
messages sending in wrong order with the use of MPI_Send
function.

Pattern criteria is given below:
Time_end(MPI_Send0) < Time_end(MPI_Send1) <
Time_end(MPI_Send2) and Time_end(MPI_Recv2) <
Time_end(MPI_Recv1) < Time_end(MPI_Recv0) and
Time_start(MPI_Recv2) < Time_start(MPI_Send2)

«Misarrangement with the use of MPI_Bsend». This
pattern is similar to «Misarrangement with the use of
MPI_Send», but MPI_Bsend is used instead of MPI_Send.

«Misarrangement with the use of MPI_Ssend». Message
misarrangement pattern is impossible when using
{MPI_Ssend, MPI_Recv} function couple, because in this

case subsequent MPI_Ssend inquiries will be blocked
without meeting corresponding MPI_Recv-s.

Fig. 3- Pattern «misarrangement» with the use of
{MPI_Send, MPI_Recv} functions couple.

«Misarrangement with the use of MPI_Rsend». Pattern
«misarrangement» is not applicable to situation when a
sending sequence via MPI_Rsend-s and backward receiving
sequence by MPI_Recv-s is used.

3.2.3 Non-blocking point-to-point
communication patterns
Consider we have a couple of calls {MPI_Isend,MPI_Wait}
in process p0 and {MPI_Irecv, MPI_Wait} in process p1.
Let’s consider errors which occur in this case in processes
pid0 and pid1.

«Waiting on sender-side when using {MPI_Isend,
MPI_Irecv}». Let’s consider the process pid0. In this
process after the call of MPI_Isend, control returns to the
process pid0 and computing instructions are executed, then
the MPI_Wait function is called. If the MPI_Wait call was
made too early, the process is blocked and stands idle. Event
trace contains timestamps for each event, therefore, the
difference between timestamps of events after and before the
MPI_Wait call allows to calculate the time of process
idleness. Pattern criteria:

0
otherwise ,(MPI_Wait)Time_start - PI_Wait)Time_end(M

) (MPI_Wait)Time_start - MPI_Wait)(Time_end(if ,0
)c ,p ,I_T(pid ji0 >

 <

=
ε

Apart from a pattern detection, we can throw a diagnostic
message with estimation of optimal distance (O_D(pid,pi,cj))
for MPI_Wait call.

+∆+
>+∆

=
else ,))(MPI_IsendTime_start-)(MPI_IrecvTime_start(

)(MPI_IrecvTime_start)(MPI_IsendTime_start if ,
)c ,p ,O_D(pid ji0

send

send

TTi

TTi

where ∆Ti – is the MPI_Isend function execution time, Tsend
estimation of time for real sending through communication
network.

Patterns of the following types are defined in similar way:
«Waiting on receiver-side when using {MPI_Isend,
MPI_Irecv}», «Waiting on receiver-side when using
{MPI_Ibsend, MPI_Irecv}», «Waiting on sender-side
when using {MPI_Issend, MPI_Irecv}», «Waiting on
receiver-side when using {MPI_Issend, MPI_Irecv}»,
«Waiting on receiver-side when using {MPI_Irsend,
MPI_Irecv}», «Waiting on sender-side when using
{MPI_Irsend, MPI_Irecv}».

«Waiting on sender-side when using {MPI_Ibsend,
MPI_Irecv}». In this case there will be no error because the
MPI_Ibsend nonblocking function is local – the function
copies a message into buffer and returns control to the
program then MPI runtime system sends a message from
buffer.

3.2.4 Close send-receive pattern
Let’s consider a program, where message send and receive

with process pidj is used in process pidi and calls to these
functions are close to each other in source code (fig. 4).

if(rank == pidi)
{

 int *send_buf = (int
*)malloc(sizeof(int) * 12001);
 int *recv_buf = (int
*)malloc(sizeof(int) * 12001);

 MPI_Status stat;
 MPI_Send(send_buf,12001,MPI_INT,
pidj,0,MPI_COMM_WORLD);
…

 MPI_Recv(recv_buf,12001,MPI_INT,
pidj,0,MPI_COMM_WORLD,stat);
}
else if(rank == pidj)
{

 int * send_buf = (int
*)malloc(sizeof(int) * 12001);
 int * recv_buf = (int
*)malloc(sizeof(int) * 12001);

 MPI_Status stat2;
 MPI_Recv(recv_buf,12001,MPI_INT,
pidi,0,MPI_COMM_WORLD, stat2);
…

 MPI_Send(send_buf,12001,MPI_INT,
pidi,0,MPI_COMM_WORLD);
}

Fig. 4- Example of using close send-receive.

If such a pattern has been found and program logic allows
(user has to make sure that buffer in following
MPI_Send/MPI_Recv is not used), user can unite MPI_Send
and MPI_Recv functions in MPI_Sendrecv function, which
will grant a serious improvement in execution time. It occurs
because the MPI_Sendrecv function is implemented
effectively by MPI vendors. Also, modern high-performance
communication networks (Infiniband [12]) support full-
duplex interconnect on low level, which allows to send and
receive message for single HCA simultaneously. In this case
send and receive operations take place at the same time,
instead of pidi waiting for MPI_Send operation ending and
only after that waiting for MPI_Recv ending. Let ∆SR be a
certain predefined threshold. Pattern criteria:
|Time_start(MPI_Recv) - Time_end(MPI_Send)| < ∆SR

3.3. Pattern types in UPC-programs
20 inefficiency patterns for UPC-programs have been
developed [13]. The first group contains eight patterns for
detecting delays in collective operation of data transfer (also
known as relocalization operations in UPC [2]). The second
group consists of seven patterns related to explicit and
implicit synchronization existing in virtually all parallel
programming languages. The third group contains three
patterns related to data transfer and they allow to detect hot
points and bottlenecks of program (in terms of data amount
transferring between threads). The fourth group (contains
two patterns) related to the master-slave model of parallel
programming, where master thread creates a bunch of slave
threads and distributes all tasks between them.

4. RESULTS
Discussed method has been applied to parallel program of
calculation of viscous flow around a blunt body [14].
Application is written in C++, volume of source code 4500

lines. Implemented tool detected 4 patterns – two «Waiting
on sender-side when using {MPI_Isend, MPI_Irecv}» and
two «Waiting on receiver-side when using {MPI_Isend,
MPI_Irecv}», correction of which improved performance 3-
5% on different number of processes.

5. CONCLUSION
In this paper the method for automated detection of errors in
parallel MPI and UPC-programs developed. The method is
based on analysis of runtime data (post-mortem analysis).
The developed method allows to detect 17 types of
performance errors in MPI-programs and 20 types of errors
in UPC-programs.

REFERENCES
[1] Marc Snir, Steve Otto, Steven Huss-Lederman, David

Walker, Jack Dongarra. MPI – The complete Reference,
Volume 1, The MPI Core, Second edition. / The MIT
Press. 1998.

[2] W. Chen, C. Iancu, K. Yelick. Communication
Optimizations for Fine-grained UPC Applications.
//14th International Conference on Parallel
Architectures and Compilation Techniques (PACT),
2005.

[3] Sameer S. Shende Allen D. Malony. “The Tau Parallel
Performance System”, International Journal of High
Performance Computing Applications, Volume 20,
Issue 2, Pages: 287 – 311, May 2006.

[4] L. Li and A.D. Malony, “Model-Based Performance
Diagnosis of Master-Worker Parallel Computations,”
Lecture Notes in Computer Science, Number 4128,
Pages 35-46, 2006.

[5] H. Su, M. Billingsley III, and A. George. "Parallel
Performance Wizard: A Performance System for the
Analysis of Partitioned Global Address Space
Applications," International Journal of High-
Performance Computing Applications, Vol. 24, No. 4,
Nov. 2010, pp. 485-510.

[6] Ilya Zhukov, Brian J. N. Wylie: Assessing
Measurement and Analysis Performance and Scalability
of Scalasca 2.0. In Proc. of the Euro-Par 2013: Parallel
Processing Workshops, volume 8374 of LNCS, pages
627-636, Springer, January 2014.

[7] Felix Wolf. Automatic Performance Analysis on
Parallel Computers with SMP Nodes. PhD thesis,
RWTH Aachen, Forschungszentrum Jülich, February
2003, ISBN 3-00-010003-2.

[8] Wolf, F., Mohr, B. Automatic performance analysis of
hybrid MPI/OpenMP applications. Journal of Systems
Architecture 49(10-11) (2003) 421–439.

[9] Wolf, F., Mohr, B., Dongarra, J., Moore, S. Efficient
Pattern Search in Large Traces through Successive
Refinement. In: Proc. European Conf. on Parallel
Computing (Euro-Par, Pisa, Italy), Springer (2004).

[10] MPICH. http://www.mpich.org
[11] MVAPICH. http://mvapich.cse.ohio-state.edu.
[12] Infiniband. http://www.infinibandta.org.
[13] M.S. Akopyan, N.E. Andreev. Research and

development of inefficiency patterns in MPI, UPC
applications. Trudy ISP RAN [Proceedings of ISP
RAS], vol. 24, pp. 49-70, 2013.

[14] F.A. Maksimov, D.A. Churakov, Yu. D. Shevelev.
Development of mathematical models and numerical
methods for aerodynamic design on multiprocessor
computers. Computational Mathematics and
Mathematical Physics, Volume 51, Issue , pp 284-307

