Parallel Computation of Matrix Discrete Multiplications in
the Field of Differential Transformations Based on Work-
Stealing Task Scheduler*®

Hamlet, Aslanyan

National Polytechnic University of

Armenia
Yerevan, Armenia

e-mail: aslanian.hamlet@gmail.com

ABSTRACT

A method for parallel computation of matrix discrete
multiplications in the field of differential transformations is
presented based on work-stealing task scheduler. The
application of the approach on a method of determining
Drazin parametric generalized inverse matrices is given. A
comparative analysis of serial and parallel versions of the
methods applied on randomly generated test matrices is
presented.

Keywords

Information technology, differential transformations, parallel
computation, work-stealing task scheduler, matrix discretes,
Drazin parametric generalized inverse matrices.

1. INTRODUCTION

Differential transformations [1] are defined as follows:

K K
Xy - B 250

Kk k tV,K:o,_ooz><(t):b<(t,tv,H,X(K))
H O =]

where t can be time, Laplace operator (S ~ %) or any other

parameter, K is an integral argument, H - scale factor, t,, -
the center of approximation, X(K) - the K -th discrete of

the original x(t), and e is the sign of transfer from the

field of originals to the field of differential imprints, and vice
versa.

These transformations found their application in a wide
range of spheres like automated and optimal control [2, 3],
differential equations [4, 5], mathematical programming [2],
analysis of parametric matrices [6], determining of
parametric generalized inverse matrices [7, 8, 9], etc.

In the field of differential transformations, matrix discretes
of the parametric matrix A(t) are defined as follows:

A(K) = ,
() Kl stk b,

K=0,00 o A)=N(t.t,,H, AKK)).

The multiplication of matrix discretes A(K),K =0,00 and
B(K),K =0, looks like [1, 2]:

k
C(k)=AKk)*B(k) = Z A(NB(K =1,k =0,K.
1=0
Or in more detail:
C(0)=A(0) - B(0),
C@) =A()-B(0)+ A(0) - B(1),

Sargis, Simonyan

National Polytechnic University of
Armenia
Yerevan, Armenia
e-mail: ssimonyan@seua.am

C(K) = A(K)-B(0) + A(K 1) - B(1) +---
+AQ) - B(K —1) + A0) - B(K).

Despite recent advances in the development of fast
algorithms for matrix multiplication [10, 11, 12], it remains a
heavy computational spot. In this paper we assume that the
complexity of matrix multiplication is O(mnl) , where mxn

and nxl are the sizes of multiplicands. The complexity of the

(K+D)(K+2)

matrix discrete multiplication is times more

thanO(mnl) . These multiplications occur very frequently
during various calculations in the field of differential
transformations and, hence, speeding up their computational
time by performing the calculations in parallel will have a
positive impact on all the methods which make use of them.
Matrix arithmetic operations, particularly multiplication, are
available through libraries and APIs like BLAS [13]
(including a portable implementation of BLAS interface —
ATLAS [14]), LAPACK [15], Intel MKL [16], etc.

In this paper an algorithm for parallel realization of matrix
discrete multiplications is presented, based on the concept of
work-stealing task scheduler [16, 17] which is an effective
way to exploit parallelism [18] and is advanced by industry
leaders such as Intel [18, 19]. The basic concept of the work-
stealing task scheduler is as follows [17]:

1. A queue of tasks is maintained for each thread of
execution. New tasks are added at the end of the queue.

2. Each thread pulls a task to execute from the back of its
task-queue (where the tasks are probably still “hot” in
cache).

3. If the thread drains its task-queue, it steals a task from the
top of another thread’s task-queue.

As a result, work-stealing task scheduler ensures a constant
workload for all the threads of execution. It is to be noted
though that this scheduler proves to be efficient when all the
tasks have approximately the same computational difficulty
[16].

Intel Threading Building Blocks library [18] is considered as
an instance of a work-stealing task scheduler in this paper.
This library allows having an exploitation of parallelism
programmatically, during the execution of the program,
using a provided API and linking with its implementation
library, whereas another widespread approach of parallel
realization — OpenMP, is a language extension (particularly
C and Fortran) and consists of compiler directives targeted to
generate a parallel-execution-oriented program [16, 20]. A
similar extension to C and C++ languages is “Cilk Plus” [16,
20]. In comparison, Intel Threading Building Blocks is
targeted to be used in programs written in C++, is free from
type restrictions present in OpenMP, and provides a larger
set of parallel algorithms and means of realization of parallel
design patterns than OpenMP [16, 18, 20].

2. DESCRIPTION OF THE METHOD

Based on the definition, the process of matrix discrete
multiplications in the field of differential transformations is
composed of separate and independent operations for each

ke0,K . Hence, it can be parallelized. The method of

parallel realization of matrix discrete multiplications based
on the number of primitive operations per thread is as
follows:

Step 1: The number of primitive operations (multiplications)
n, for each task is chosen. Based on n,, the number of

matrix multiplications by each task is determined as
_o
mnl

Step 2: Set k=0.

Step 3: A task is created for the range (k,x), where x is
such that the number of matrix multiplications in the range
(k,x) is p . Itis easy to prove that
~344/9-4(2— (k2 +3k + 2+ 2p))
X= .
2

Step 4: k =x+1.

Step 5: If k<K, switch to the step 3. Otherwise, end the
algorithm.

In this case each thread will execute approximately the same
ny number of t,operations. As a result, on an ideal machine
(where all timing delays are discarded) with ¢ number of
cores, the time spent on matrix discrete parallel
multiplication is defined as

(K+D(K +2)mnl (K+D)(K +2)mnl
'noto = 'to.

T =
parallel 2noc 2

Whereas for the serial version we have

(K+1D)(K +2)mnl
T serialzf 'tO‘

The number of multiplications n, per each thread is chosen

based on the matrix dimensions, K and the number of cores
available on the machine.

3. EXPERIMENTS

We apply the proposed approach on parallel realization of
matrix discrete multiplications on the example of a method
for determining Drazin parametric generalized inverse
matrices [21, 22]. Drazin parametric generalized inverse

matrix AP (t) of a square matrix A(t) of size n is defined
as:

AP () A AP (t) = AP (v),
A®AP (1) = AP (D) AY),
AR AP (1) = AR (1),

where k =index(A(t)) is the lowest non-negative number

for which rank(A*(t)) = rank(AX (t)) and is called the
index of a matrix [22]. The method for determining Drazin

parametric generalized inverse matrices in the field of
differential transformations looks as follows [7]:

Step 1: The following matrix discretes are calculated:

A(K):ﬂ_ " A

K oK K =0,00,

t—t,

K
A" (K) = AML(K)* A(K) = Z A" LAK — 1), K =0, .
1=0

Step 2: The matrix discretes of the skeleton decomposition
A"(t) = B(t)-C(t) are calculated [23], where B(t) and
C(t) are of sizes nxr and rxn, respectively, and r is the
rank of the matrix A(t) .

Step 3: By setting X (t) =C(t)B(t) , the matrix discretes
XD (K), K =0,00 of X I(t) are calculated [24] (note
that X(‘l)(K), is the K —th matrix discrete of the inverse

matrix X “1(t), and not the inverse matrix of the K —th
matrix discrete X (K)).

Step 4: The matrix discretes of Drazin parametric
generalized inverse matrix AP (t) are calculated:

AP (K) = A" LK) * B(K) * X T2 (K) * C(K).

As it is the case with most of the methods in the field of
differential transformations, the original AP (t) can then be

restored from the matrix discretes AP(K) by means of

several well-known backward restoration transformations
like single- and multi- point differential-Taylor, Pade
transformations, etc. [1, 2]

The serial and parallel implementations of the method in
C++ were tested against the following test conditions:

1. Intel Threading Building Blocks was taken as an example
of work-stealing task scheduler.

2. Randomly generated polynomial test square matrices of
sizes ranging from 5 to 25 were fed to the input of the
method. The highest degree of polynomials was 5.

3. The number of multiplications n, per each thread was

chosen as 50 000, 100 000, 150 000 and 200 000.

4. Test machine was 4-core Intel(R) Core(TM) i5-4210U
CPU @ 1.70GHz.

5. The number of discretes was taken as K =100.

The result of serial and parallel executions of the method is
presented in the table below (in seconds), where the columns
denote the size of the input matrix, the time of serial
execution and the times of parallel executions of the method
for each number of multiplications n, per each thread.

Parallel Parallel Parallel Parallel
50 000 100 000 150 000 200 000

5 | 0.063 | 0.049 0.041 0.046 0.048
10 | 0.323 | 0.154 0.180 0.197 0.240
15 | 1.579 | 0.631 0.751 0.607 0.592
20 | 3.863 | 1.985 1.569 1.881 1.592
25 | 7.819 | 3.776 3.502 3.654 3.871

Size Serial

The graphical representations of the same results are
presented in the figure below. All measurements of time are
in seconds.

Serial

Parallel task - 150k mult
Parallel task - 50k mult

Parallel task - 100k mult

- =~ Parallel task - 200k mult
0 ‘__=;_._—-—-'—'_/ A

o 5 10 15 20 25 30

The choice of the number n, is usually not obvious and is

done by performing several experiments. Based on the
results of the experiments presented here, the choice of
ny =100000 as a number of primitive multiplications per

each thread, in average, provides the best results for this
method of determining Drazin parametric generalized
inverse matrices — more than 2 times performance gain for
parallel realization.

4. CONCLUSION

A method for parallel realization of matrix discrete
multiplications in the field of differential transformations is
presented based on the concept of work-stealing task
scheduler. Taking into account the fact that the
computational difficulty of each parallel task in this
approach is relatively the same, this method proves to be
very efficient in conjunction with this type of scheduler
which is proven by the theoretical analysis of it on an ideal
machine. The approach is applied in the process of
determining Drazin parametric generalized inverse matrices.
Test results of the realization of the method in C++ on
randomly generated test matrices explicitly showed the
advantages of the parallel realization and provided data for
the choice of the number n, of primitive operations per

thread.

REFERENCES

[1] T. Tyxos, “HuddepeHuunansusie mpeobpaszoBaHus
¢yunkumit u ypaBuenuit”, Haykosa dymka, 419c., 1980.

[2] C. CumonsH, A. AserucsiH, “IlpuknagHas TeopHs
muddepeHMANBHEIX TTpeobpa3oBanuii”, M30-60 IHVA
“Yapmapazem”, 361c¢., 2010.

[3] I. Hwang, J. Li, D. Du, “A Numerical Algorithm for
Optimal Controls of Class of Hybryd Systems: Differential
Transformation Based Approach”, International Journal of
Control, Vol. 81, N2, pp. 277-293, 2008.

[4] K. Batiha, B. Batiha, “A New Algorithm for Solving
Linear Ordinary Differential Equations”, World Applied
Sciences Journal 15, N12, pp. 1774-1779, 2011.

[5] M. Eslami, H. Zareamoghaddam, <“Differential
Transform Method for Abel Differential Equation”, World
Applied Sciences 13, N5, pp. 1005-1011, 2011.

[6] M. Tamassin, ‘“Pa3paboTka METOIOB OIpPEAEICHHUS
XapakTEPUCTUK HEABTOHOMHBLIX MAaTpull U aBTOMAaTHU3allUs
BBIUMCIIMTEIBHBIX Tpouenyp”, Asmopeg. oucc. ... k.m.n.,
24c., 2012.

[71 T. Acnansn, C. Cumonsn, “/l-aHajor Meroja
OIpeaeIeHUs OJIHOTIapaMeTPUUECKOM 00001IeHHO#
O6paTHOI71 MaTpUIbL I[pa31/IHa, OCHOBAaHHBIM Ha CKEIIETHOM
pa3ioKeHuU MaTpHLbl’, Hzeecmus Tomckozo
nonumexnuyeckoeo yuusepcumema, T1.325, N2, C.29-34,
2014.

[8] C. CuMOHSIH, “OmnpeneneHue KBaJpaTHBIX
napameTpuyeckux 000OIIEeHHBIX OOpaTHBIX MaTpul Mypa-
Ilenpoysa NIpUMEHEHNEM 1 epeHIHaIbHBIX
npeoOpazoBaHuit ITyxoBa”, Hzeecmus Tomckozo
noaumexnuueckoeo yuusepcumema, T1.323, N2, C.6-10,
2013.

[9] C. Cumonsn, “TlapaienbHble BBIYHCIUTEIBHBIC METO/IBI
OTpeNeNiCHUs] HapaMeTPU4ecKUX OOOOIICHHBIX OOpaTHBIX
MaT“pI/IL[”, Hzeecmus Tomckoco noaumexHu4ecKozco
yuusepcumema, T. 323, N5, C. 10-15, 2013.

[10] V. Strassen, “Gaussian elimination is not optimal”,
Numerische Mathematik 14, N3, pp. 354-356, 1969.

[11] D. Coopersmith, S. Winograd, “Matrix Multiplicaton
via Arithmetic Progressions”, J. Symbolic Computation, pp.
251-280, 1990.

[12] F. Le Gall, “Powers of Tensors and Fast Matrix
Multiplication”, Proceedings of the 39th International
Symposium on Symbolic and Algebraic Computation, pp.
296-303, 2014.

[13] http://www.netlib.org/blas/

[14] http://math-atlas.sourceforge.net/

[15] E. Anderson, Z. Bai, C. Bischof, S. Blackford, et al,
“LAPACK Users' Guide (Software, Environments and
Tools)”, 3" edition, SIAM, 429p., 1987.

[16] M. McCool, J. Reinders, A. Robison, “Structured
Parallel Programming: Patterns for Efficient Computation”,
Morgan Kaufmann, 432 p., 2012.

[17] R. Blumofe, C. Leiserson, “Scheduling Multithreaded
Computations by Work-Stealing”, Proceedings of the 35th
Annual IEEE Conference on Foundations of Computer
Science, 29p., 1994,

[18] J. Reinders, “Intel Threading Building Blocks:
Outfitting C++ for Multi-core Processor Parallelism”,
O’REILLY, 336p., 2007.

[19] A. Kukanov, M. Voss, “The Foundations for Scalable
Multi-core Software in Intel Threading Building Blocks”,
Intel Technology Journal, Vol. 11, Issue 4, pp. 309-322,
2007.

[20] J. Jeffers, J. Reinders, “Intel Xeon Phi Coprocessor
High-Performance Programming”, Morgan Kaufmann,
432p., 2013.

[21] M. Drazin, “Pseudo-inverses in associative rings and
semigroups”, The American Mathematical Monthly 65(7),
pp. 506-514, 1958.

[22] S. Campbell, C. Meyer, “Generalized Inverses of Linear
Transformations”, Society for Industrial and Applied
Mathematics (SIAM), 292 p., 2008.

[23] C. Cumownsin, I'. AcnansH, “Meroa ONpeaeNeHUs
napamerprieckux (B,Q)- 0600meHHO-00paTHEIX Matpwuil’”,
Uzeecmusn HAH PA u THYA, Cep. TH, T. LXVII, N2, C.220-
226, 2014.

[24] C. Cumonsn, M. Tamazsn, “I-anamor L(t)U(t)-
pasnoxeHust s oOpalleHusT HEaBTOHOMHBIX MaTpHil’,
Becmuux TUVA. Cepusi “Unghopmayuonnvie mexmonozuu,
anexkmponuka, paouomexuuxa”, Bun. 15, N1, C.35-41, 2012.

http://www.netlib.org/blas/
http://math-atlas.sourceforge.net/

