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ABSTRACT 
A method for parallel computation of matrix discrete 

multiplications in the field of differential transformations is 

presented based on work-stealing task scheduler. The 

application of the approach on a method of determining 

Drazin parametric generalized inverse matrices is given. A 

comparative analysis of serial and parallel versions of the 

methods applied on randomly generated test matrices is 

presented. 
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1. INTRODUCTION 
Differential transformations [1] are defined as follows: 
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where t  can be time, Laplace operator (
dt

d
S ~ ) or any other 

parameter, K  is an integral argument, H  - scale factor, t  - 

the center of approximation, )(KX  - the K -th discrete of 

the original )(tx , and   is the sign of transfer from the 

field of originals to the field of differential imprints, and vice 

versa. 

These transformations found their application in a wide 

range of spheres like automated and optimal control [2, 3], 

differential equations [4, 5], mathematical programming [2], 

analysis of parametric matrices [6], determining of 

parametric generalized inverse matrices [7, 8, 9], etc.  

In the field of differential transformations, matrix discretes 

of the parametric matrix )(tA  are defined as follows: 
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The multiplication of matrix discretes  ,0),( KKA  and 

 ,0),( KKB  looks like [1, 2]: 
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Or in more detail: 
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 Despite recent advances in the development of fast 

algorithms for matrix multiplication [10, 11, 12], it remains a 

heavy computational spot. In this paper we assume that the 

complexity of matrix multiplication is )(mnlO , where mxn  

and nxl  are the sizes of multiplicands. The complexity of the 

matrix discrete multiplication is 
2

)2)(1(  KK
 times more 

than )(mnlO . These multiplications occur very frequently 

during various calculations in the field of differential 

transformations and, hence, speeding up their computational 

time by performing the calculations in parallel will have a 

positive impact on all the methods which make use of them. 

Matrix arithmetic operations, particularly multiplication, are 

available through libraries and APIs like BLAS [13] 

(including a portable implementation of BLAS interface – 

ATLAS [14]), LAPACK [15], Intel MKL [16], etc. 

In this paper an algorithm for parallel realization of matrix 

discrete multiplications is presented, based on the concept of 

work-stealing task scheduler [16, 17] which is an effective 

way to exploit parallelism [18] and is advanced by industry 

leaders such as Intel [18, 19]. The basic concept of the work-

stealing task scheduler is as follows [17]: 

1. A queue of tasks is maintained for each thread of 

execution. New tasks are added at the end of the queue. 

2. Each thread pulls a task to execute from the back of its 

task-queue (where the tasks are probably still “hot” in 

cache). 

3. If the thread drains its task-queue, it steals a task from the 

top of another thread’s task-queue. 

As a result, work-stealing task scheduler ensures a constant 

workload for all the threads of execution. It is to be noted 

though that this scheduler proves to be efficient when all the 

tasks have approximately the same computational difficulty 

[16]. 

Intel Threading Building Blocks library [18] is considered as 

an instance of a work-stealing task scheduler in this paper. 

This library allows having an exploitation of parallelism 

programmatically, during the execution of the program, 

using a provided API and linking with its implementation 

library, whereas another widespread approach of parallel 

realization – OpenMP, is a language extension (particularly 

C and Fortran) and consists of compiler directives targeted to 

generate a parallel-execution-oriented program [16, 20]. A 

similar extension to C and C++ languages is “Cilk Plus” [16, 

20]. In comparison, Intel Threading Building Blocks is 

targeted to be used in programs written in C++, is free from 

type restrictions present in OpenMP, and provides a larger 

set of parallel algorithms and means of realization of parallel 

design patterns than OpenMP [16, 18, 20]. 



2. DESCRIPTION OF THE METHOD 
Based on the definition, the process of matrix discrete 

multiplications in the field of differential transformations is 

composed of separate and independent operations for each 

Kk ,0 . Hence, it can be parallelized. The method of 

parallel realization of matrix discrete multiplications based 

on the number of primitive operations per thread is as 

follows: 

 

Step 1: The number of primitive operations (multiplications) 

0n  for each task is chosen. Based on 0n , the number of 

matrix multiplications by each task is determined as 
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Step 2: Set 0k . 

 

Step 3: A task is created for the range ),( xk , where x  is 

such that the number of matrix multiplications in the range 

),( xk  is p . It is easy to prove that 
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Step 4: 1 xk . 

 

Step 5: If Kk  , switch to the step 3. Otherwise, end the 

algorithm. 

 

In this case each thread will execute approximately the same 

0n  number of 0t operations. As a result, on an ideal machine 

(where all timing delays are discarded) with c  number of 

cores, the time spent on matrix discrete parallel 

multiplication is defined as 
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Whereas for the serial version we have 
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The number of multiplications 0n  per each thread is chosen 

based on the matrix dimensions, K  and the number of cores 

available on the machine. 

 

3. EXPERIMENTS 
We apply the proposed approach on parallel realization of 

matrix discrete multiplications on the example of a method 

for determining Drazin parametric generalized inverse 

matrices [21, 22]. Drazin parametric generalized inverse 

matrix )(tAD  of a square matrix )(tA  of size n  is defined 

as: 

),()()()( tAtAtAtA DDD   
),()()()( tAtAtAtA DD   
),()()(1 tAtAtA kDk   

where ))(( tAindexk   is the lowest non-negative number 

for which ))(())(( 1 tAranktArank kk   and is called the 

index of a matrix [22]. The method for determining Drazin 

parametric generalized inverse matrices in the field of 

differential transformations looks as follows [7]: 

 

Step 1: The following matrix discretes are calculated: 
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Step 2: The matrix discretes of the skeleton decomposition 

)()()( tCtBtAn   are calculated [23], where )(tB  and 

)(tC  are of sizes nxr  and rxn , respectively, and r  is the 

rank of the matrix )(tA . 

 

Step 3: By setting )()()( tBtCtX  , the matrix discretes 

 ,0),()1( KKX  of )(1 tX   are calculated [24] (note 

that ),()1( KX   is the K –th matrix discrete of the inverse 

matrix )(1 tX  , and not the inverse matrix of the K –th 

matrix discrete )(KX ). 

 

Step 4: The matrix discretes of Drazin parametric 

generalized inverse matrix )(tAD  are calculated: 

).()()()()( )2(1 KCKXKBKAKA nD    

As it is the case with most of the methods in the field of 

differential transformations, the original )(tAD  can then be 

restored from the matrix discretes )(KAD  by means of 

several well-known backward restoration transformations 

like single- and multi- point differential-Taylor, Pade 

transformations, etc. [1, 2] 

 

The serial and parallel implementations of the method in 

C++ were tested against the following test conditions: 

1. Intel Threading Building Blocks was taken as an example 

of work-stealing task scheduler. 

2. Randomly generated polynomial test square matrices of 

sizes ranging from 5 to 25 were fed to the input of the 

method. The highest degree of polynomials was 5. 

3. The number of multiplications 0n  per each thread was 

chosen as 50 000, 100 000, 150 000 and 200 000. 

4. Test machine was 4-core Intel(R) Core(TM) i5-4210U 

CPU @ 1.70GHz. 

5. The number of discretes was taken as .100K  
 

The result of serial and parallel executions of the method is 

presented in the table below (in seconds), where the columns 

denote the size of the input matrix, the time of serial 

execution and the times of parallel executions of the method 

for each number of multiplications 0n  per each thread. 

 

Size Serial 
Parallel 

50 000 

Parallel 

100 000 

Parallel 

150 000 

Parallel 

200 000 

5 0.063 0.049 0.041 0.046 0.048 

10 0.323 0.154 0.180 0.197 0.240 

15 1.579 0.631 0.751 0.607 0.592 

20 3.863 1.985 1.569 1.881 1.592 

25 7.819 3.776 3.502 3.654 3.871 



The graphical representations of the same results are 

presented in the figure below. All measurements of time are 

in seconds. 

 

 
 

The choice of the number 0n  is usually not obvious and is 

done by performing several experiments. Based on the 

results of the experiments presented here, the choice of 

0001000 n  as a number of primitive multiplications per 

each thread, in average, provides the best results for this 

method of determining Drazin parametric generalized 

inverse matrices – more than 2 times performance gain for 

parallel realization. 

 

4. CONCLUSION 
A method for parallel realization of matrix discrete 

multiplications in the field of differential transformations is 

presented based on the concept of work-stealing task 

scheduler. Taking into account the fact that the 

computational difficulty of each parallel task in this 

approach is relatively the same, this method proves to be 

very efficient in conjunction with this type of scheduler 

which is proven by the theoretical analysis of it on an ideal 

machine. The approach is applied in the process of 

determining Drazin parametric generalized inverse matrices. 

Test results of the realization of the method in C++ on 

randomly generated test matrices explicitly showed the 

advantages of the parallel realization and provided data for 

the choice of the number 0n  of primitive operations per 

thread. 
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