
LLVM-Based Code Clone Detection Framework*

Arutyun, Avetisyan
ISP RAS

Moscow, Russia

arut@ispras.ru

Shamil, Kurmangaleev
ISP RAS

Moscow, Russia

kursh@ispras.ru

Sevak, Sargsyan
ISP RAS

Moscow, Russia

sevaksargsyan@ispras.ru

Mariam, Arutunian
ISP RAS

Moscow, Russia

arutunian@ispras.ru

Andrey, Belevantsev
ISP RAS

Moscow, Russia

abel@ispras.ru

ABSTRACT*
Existed methods of code clones detection have some

restrictions. Textual and lexical approaches cannot detect

strongly modified fragments of code. Syntactic and metrics

based approaches detect strong modifications with low

accuracy. On the contrary, semantic approach accurately

detects the cloned fragments of code with small changes as

well as the strongly modified ones. Methods based on this

approach are not scalable for analysis of large projects. This

paper describes LLVM-based code clone detection

framework, which uses program semantic analysis. It has

high accuracy and is scalable for analysis million lines of

source code. The tool embeds a testing system, which allows

generating code clones for the project automatically. It is

used for determining the developed algorithms accuracy. The

instrument is applicable for all languages that can be

compiled to LLVM bitcode. Proposed method was

compared with two widely used tools MOSS and CloneDR.

Results show that it has higher accuracy. The tool is scalable

for analysis of linux-2.6 kernel, which has about fourteen

millions lines of source code.

Keywords
Code clone, program dependence graph, LLVM

1. INTRODUCTION
Software developers often reuse the same fragments of code

many times by making small modifications. Hard deadlines

usually increase copy-paste activities, which increase the

number of code clones. Code cloning can lead to many

semantic errors. For example, software developer can forget

to rename some variable after copy-paste. The software,

which has many clones, probably will have many mistakes

and low quality. According to different studies [1, 2] up to

20% of source code can belong to clones. Clone detection

tools are widely used:

 During software development to avoid mistakes and

improve its quality;

 For automatic refactoring;

 For code size optimizations;

 For semantic errors detection.

The goal of this paper is to introduce LLVM-based code

clone detection framework. It is based on semantic analysis

of the program and is scalable up to millions lines of source

code. The instrument consists of three basic parts.

The first part is responsible for program dependence graphs

(PDG) generation. PDGs are constructed during project’s

build time, which allows creating these graphs without

additional source code analysis.

The second part analyzes PDGs for code clones detection. It

contains a number of new algorithms for PDGs’ splitting and

similar subgraphs detection. Due to the use of combined

algorithms the tool is scalable up to millions lines of source

code. Two types of algorithms are used for maximal

isomorphic subgraphs detection. The first type of algorithms

tries to prove that the pair of PDGs cannot have the desired

isomorphic subgraphs. The most of PDGs’ pairs are

*
The paper is supported by RFBR grant 15-07-07541.

processed by them. These algorithms have liner complexity.

The second type is approximate algorithms for maximal

isomorphic subgraphs detection. These algorithms are

applied if algorithms of the first type are failed. They have

high computational complexity.

The third part is responsible for testing the developed

algorithms. It automatically generates a set of code clones

for a project and runs the clone detection algorithms. The

number of clones detected by the specific algorithm specifies

its correctness.

2. BACKGROUND

2.1. Clone types
There are three basic clone types [3]. The first type is the

identical code fragments except the variations in whitespace

(may be also variations in layout) and comments (T1). The

second type is the structurally/syntactically identical code

fragments except the variations in identifiers, literals, types,

layout and comments (T2). The third type is the copied

fragments of code with further modifications. Statements can

be changed, added or removed in addition to variations in

identifiers, literals, types, layout and comments (T3) (Fig. 1).

Figure 1. Examples for three clone types.

2.2. Code clone detection approaches
There are five [4, 5] basic approaches for code clone

detection.

 Methods based on textual approach consider the source

code as text and try to find equal substrings [6]. These

substrings are clones. When all clones are found, clones

which are located nearby can be combined to one.

Basically (T1) clones are found.

 In case of lexical approach source code is parsed as a

sequence of tokens. Then the longest common

subsequence is determined. There are a few effective

algorithms based on the parameterized suffix tree for

clone detection [7]. One more interesting method

transforms Java code to an intermediate representation

and compares them instead of the original source [8].

These types of algorithms can find basically (T1) and

(T2) clone types.

Original source
 void sumProd(int n) {
 float sum = 0.0;

 float prod = 1.0;

 for (int i = 1; i<=n; i++) {
 sum = sum + i;

 prod = prod * i;

 foo(sum, prod);
 } }

Clone Type 1
void sumProd(int n) {
 float sum = 0.0; //C1

 float prod = 1.0; // C2

 for (int i = 1; i <= n; i++) {
 ____ sum = sum + i;

 ____ prod = prod * i;

 ____ foo(sum, prod);
 }}

Clone Type 2
void sumProd(int n) {

 int s = 0; //C1

 int p = 1; // C2
 for (int i = 1; i <= n; i++) {

 ____ s = s + i;

 ____ p = p * i;

 ____ foo(s, p);

 } }

Clone Type 3
void sumProd(int n) {

 int s = 0; //C1

 int p = 1; // C2
 for (int i = 1; i <= n; i++) {

 ____ s = s + i * i;

 // deleted

 ____ foo(s, p);

 } }

 The next is the syntactic approach. The algorithm works

on Abstract Syntax Tree (AST). In this case clones are

matched AST subtrees. Some algorithms directly

compare two ASTs to find common subtrees [9].

Another algorithm constructs vectors of AST subtrees

and compares them [10]. Algorithms based on this

approach find all three types of clones.

 Metrics-based algorithms are widely used for clone

detection. Algorithms based on this method compute

a number of metrics for code fragments and compare

them. Basically these metrics are computed for ASTs

and PDGs [11]. Another method clusters computed

metrics by using neural networks [12]. Metrics-based

algorithms have better performance than AST or PDG

comparison algorithms, but have low accuracy.

 The last one is the semantic approach. The source code

is parsed to PDG. PDG nodes are program instructions

whereas PDG edges are dependences between those

instructions. Algorithms based on PDG try to find

maximal isomorphic subgraphs for a pair of PDGs [13,

14, 15]. All algorithms are approximate because

maximal isomorphic subgraphs detection is an NP-hard

problem. PDG-based methods have high accuracy but

low performance.

Textual and lexical approaches are not effective for detecting

clones of (T3) type. AST and metrics based methods detect

(T3) type of clones with low accuracy. Only semantic

analysis allows reaching high accuracy.

3. PDG GENERATION
PDGs for the project are generated based on the LLVM

intermediate representation called a bitcode. The LLVM pass

is added for these graphs generation (see Fig. 2). The

generation happens during the project compile time. It

allows constructing graphs for large scale projects

effectively. PDG graph’s vertices are LLVM bitcode [16]

instructions. Edges are obtained based on LLVM use-def

[16], alias and control flow analyses. Those vertices which

have no edges are removed, after which the optimized PDGs

are stored to files. The tool allows generating PDG graphs in

three different ways. Edges of the minimal PDG are

constructed based only on LLVM use-def analysis. The

middle level PDG also includes edges obtained by the alias

analysis. The full PDG contains all data and control

dependencies. This approach allows avoiding wasting

unneeded resources, e.g., the minimal PDG is enough for

accurate detection of T1 and T2 clone types. LLVM

provides compiler APIs and has a large set of optimization

libraries. Due to this, many programming languages provide

source code translation to LLVM bitcode. Therefore we can

apply the developed tool for all these languages.

Figure 2. LLVM based model for PDGs’ generation.

4. CLONE DETECTION
The clone detection is a multistage process. First, generated

PDGs are loaded to memory, and then four basic steps are

performed (see Fig. 3).

The first step is splitting PDGs to subgraphs. These

subgraphs are considered as potential clones of each other.

The second step is the application of fast check algorithms.

These algorithms have linear complexity and try to prove

that a pair of PDGs cannot have big enough isomorphic

subgraphs. The third stage is the maximal isomorphic

subgraphs detection. New algorithm, based on slice (see

Section 4.3) is proposed for maximal isomorphic subgraphs

detection. The fourth step is the filtration of the obtained

pairs of maximal isomorphic subgraphs. The last step is

printing of the corresponding source code for isomorphic

subgraphs as detected clones.

Figure 3. Basic stages of code clones detection.

4.1. Splitting PDGs
Three methods are implemented for splitting. The first

method splits PDG to weakly connected components.

The second method splits PDG to subgraphs, where every

pair has less than N common nodes [17]. These two methods

have two basic disadvantages: subgraphs’ sizes might have

big variation; corresponding source code lines for one

subgraph might be located far from each other. To avoid

these disadvantages, the third method is proposed. PDG

edges are considered as source code ranges (see Fig. 4).

Figure 4. Example of PDG’s splitting.

For PDG’s corresponding source code lines, the numbers of

intersected ranges are considered. Source code is split based

on those lines, which have minimum number of intersecting

ranges. Corresponding subgraphs for split code fragments

are considered for clone detection. Experimental results

show that this splitting method allows detecting about

1.5-2 times more clones than the first and the second

methods.

4.2. Fast checks
These algorithms have liner complexity and try to prove that

the pair of PDGs does not have big enough isomorphic

subgraphs. Two nodes of PDG are similar if their types are

the same. Fast check algorithms compare PDG’s nodes

Code Clone Detector
 Load PDG

 Split PDG to subgraphs

 Fast checks

 Code clone detection algorithm

 Filtering

 Printing

Stored PDGs

CLANG

LLVM

EXECUTABLE

PASS

PDG PASS

PASS
 PDG PASS

 PDG construction

 PDG optimizations

 PDG serialization

1: a = 10;

2: b = a*5;

3: x = 2;

4: x = x*x

Vertices Intersected

ranges

1 0

2 1

3 0

4 1

G

1: a = 10; 3: x = 2;

2: b = a*5; 4: x = x* x

1: a = 10;

2: b = a*5;

G1

3: x = 2;

4: x = x* x

G2

based on their types. If the algorithm was not able to detect

enough pairs of similar nodes in the corresponding graphs,

these graphs cannot have big enough isomorphic subgraphs.

The first algorithm stores PDG nodes in a hash set, the key

for the set is the node’s type. If the size of intersection, for

the sets of corresponding pair of PDGs, is not big enough

then this pair of PDGs does not have the desired isomorphic

subgraphs.

The second algorithm computes a characteristic vector for

every PDG. Elements of this vector are count of nodes with

specific type. If the Euclidean distance for corresponding

vectors of considered pair of PDGs is too big then this pair

fails the fast check.

4.3. Slice-based clone detection
For the given PDG’s pair, candidate pairs of nodes are

constructed. The first node in the pair is from the first PDG,

the second one from the second PDG. For every pair of

nodes backward and forward slices [13] are applied to

construct isomorphic subgraphs. Maximal isomorphic

subgraphs are selected from the constructed set of

isomorphic subgraph pairs.

Two approaches are developed for candidate set

construction. The first approach chooses for every node of

the first PDG the most similar node from the second PDG.

Metrics [18] are used for similar nodes detection. For all

nodes of both PDGs bit vectors [18] are constructed. The

most similar nodes are chosen based on similarity function

[18]. The second approach considers vertices with a

maximal number of neighbors from the first PDG and tries to

find identical vertices (with neighbors) from the second

PDG.

4.4. Filtration
The last stage in the process of code clone detection is the

filtration of some detected pairs of isomorphic subgraphs.

The need for a filter arises from the fact that the concept of

code clone is defined for source code of the program, but

isomorphic subgraphs are considered as clones. A code clone

must present a sequence of lines in the file (not necessarily

consecutive, but not highly dispersed). The purpose of

filtering is to verify that the source code for the

corresponding isomorphic subgraphs is not much scattered.

5. AUTOMATIC CLONE GENERATION
Two approaches are suggested for automatic generation of

code clones. The first method uses obfuscation [19] and

standard transformation, optimization passes of LLVM. For

every function of LLVM bitcode two PDGs are constructed.

The first PDG comes from the original code and is

constructed based on LLVM bitcode generated by the Clang

compiler. The second PDG is the clone PDG, and it is

constructed based on the transformed/obfuscated bitcode.

Standard passes of LLVM are applied to bitcode for

transformation (see Fig. 6).

Figure 6. LLVM-based clone generation model.

The second method merges the original program PDGs to

generate code clones (see Fig. 7).

Figure 7. Clone generation based on PDG’s merging.

Three methods are applied for PDGs’ merge. The first

method performs the union of two PDGs without adding

extra edges or vertices. The second method unions a pair of

PDGs and also adds extra random edges between the nodes

of the corresponding graphs. The third method considers

nodes of the first PDG and tries to find the similar nodes in

the second PDG. If the similar node is detected then all

neighbors of this node are added to the first PDG with their

corresponding edges.

To check correctness of the implemented clone detection

algorithms, original and cloned PDGs are compared. The

number of detected clones specifies the correctness and

power of the tested algorithm.

6. RESULTS
The developed tool was applied to a number of widely used

libraries and software systems. It was compared with other

tools of clone detection. The tests were run on a machine

with Intel Core i3 CPU 540 and 8GB RAM.

6.1. Comparison with other tools
The described methods were compared with two widely used

tools. The first one is MOSS [20]. It has been developed for

detecting plagiarism in programming classes (Stanford

University). The second one is CloneDR [21]. It was

developed by Semantic Designs Company, which provides

different tools for software design and analyses. The test

suite is described in Table 1. The first test (Original Code)

was modified in different ways to obtain all three types of

clones. The paper [22] contains more details for all tests.

Theoretically all files are clones, because they were obtained

by modification of the single test. Clone detection tool with

high accuracy should determine as much clones as possible.

Tab.1 shows results of comparison for MOSS, CloneDR and

developed three methods for clone detection.

Test Name MOSS CloneDR Our tool

copy00.cpp yes yes yes

copy01.cpp yes yes yes

copy02.cpp yes yes yes

copy03.cpp yes yes yes

copy04.cpp yes yes yes

copy05.cpp yes yes yes

copy06.cpp no yes yes

copy07.cpp yes yes yes

copy08.cpp no no yes

……………………

Comparison

PDG N PDG 1

Original list of PDGs

 ……… PDG’ N/2 PDG’ 1

Merged list of PDGs

PDG i PDG’ j

PDG’ j

PDG i PDG k

CLANG

LLVM

Modified PDG

PASS

…………

…..

PASS

LLVM bitcode

Original PDG

Comparison

copy09.cpp no yes yes

copy10.cpp no yes yes

copy11.cpp no no yes

copy12.cpp yes yes yes

copy13.cpp yes yes yes

copy14.cpp yes yes yes

copy15.cpp yes yes yes

Table 2. The results of comparison: "yes" - clone is found,

"no" - clone is not found.

6.2. PDG generation time
Fig. 8 shows lines of source code for analyzed projects.

Linux kernel has about fourteen million lines of source code

written in the C language. Fig. 9 shows compilation time of

the project with and without PDGs’ generation. In the worst

case compile time increases only by ~30%. Fig. 10 shows

sizes of generated PDGs’ for all projects.

Figure 8. Lines of source code for projects

Figure 9. Comparison of compilation time for projects.

6.3. Detected clones
Fig. 10 shows the number of detected clones and the false

positive rates. The Linux kernel contains about 2000 clones.

The manual analysis identifies only 73 false positive clones.

Figure 10. False positive rate of clone detection.

7. ACKNOWLEDGEMENT
The paper is supported by RFBR grant 15-07-07541.

REFERENCES
[1] B. Baker, "On finding duplication and near-duplication in

large software systems", in: Proceedings of the 2nd Working

Conference on Reverse Engineering, pp. 86-95, 1995.

[2] C.K. Roy, J.R. Cordy, "An empirical study of function

clones in open source software systems", in: Proceedings of

the 15th Working Conference on Reverse Engineering, pp.

81-90, 2008.

[3]. S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo,

"Comparison and evaluation of clone detection tools",

Transactions on Software Engineering, pp. 577–591, 2007.

[4]. D. Rattana, R. Bhatiab and M. Singhc, "Software clone

detection", Information and Software Technology, vol. 55,

no. 7, pp. 1165-1199, 2013.

[5]. S. Gupta and P. C. Gupta, "Literature Survey of Clone

Detection Techniques", International Journal of Computer

Applications, vol. 99, no. 3, pp. 41-44, 2014.

[6] S. Ducasse, M. Rieger, S. Demeyer, "A language

independent approach for detecting duplicated code", in:

Proceedings of the 15th International Conference on

Software Maintenance, pp. 109-119, 1999.

[7] T. Kamiya, S. Kusumoto, K .Inoue, CCFinder: "A

multilinguistic token-based code clone detection system for

large scale source code", IEEE Transactions on Software

Engineering, pp. 654-670, 2002.

[8]. R. Kaur, S. Singh, "Clone detection in software source

code using operational similarity of statements", ACM

SIGSOFT Software Engineering Notes, pp. 1-5, 2014.

[9] I. Baxter, A. Yahin, L. Moura, M. Anna, "Clone

detection using abstract syntax trees", in: Proceedings of the

14th IEEE International Conference on Software

Maintenance, pp. 368-377, 1998.

[10] L. Jiang, G. Misherghi, Z.Su, S.Glondu, "DECKARD:

Scalable and accurate tree-based detection of code clones",

in: Proceedings of the 29th International Conference on

Software Engineering, pp. 96-105, 2007.

[11] J. Mayrand, C. Leblanc, E. Merlo, "Experiment on the

automatic detection of function clones in a software system

using metrics", in: Proceedings of the 12th International

Conference on Software Maintenance, pp. 244-253, 1996.

[12] N. Davey, P. Barson, S. Field, R. Frank, "The

development of a software clone detector", International

Journal of Applied Software Technology, pp. 219-236, 1995.

[13] R.Komondoor, S.Horwitz, "Using slicing to identify

duplication in source code", in: Proceedings of the 8th

International Symposium on Static Analysis, pp.40-56, 2001.

[14] J. Krinke, "Identifying similar code with program

dependence graphs", in: Proceedings of the 8th Working

Conference on Reverse Engineering, pp.301-309, 2001.

[15]. S. Sargsyan, S. Kurmnagaleev, A. Belevantsev, H.

Aslanyan, A. Baloian, "Scalable code clone detection tool

based on semantic analysis", The Proceedings of ISP RAS,

pp. 39-49 2015.

[16]. http://www.llvm.org

[17]. M. Gabel, L. Jiang, Z. Su, "Scalable detection of

semantic clones", in: Proceedings of the 30th International

Conference on Software Engineering, pp.321–330, 2008.

[18]. S.S. Sargsyan, S.F. Kurmangaleev, A.V. Baloian, H.K.

Aslanyan, "Scalable and Accurate Clones Detection Based

on Metrics for Dependence Graph", Mathematical Problems

of Computer Science, pp. 54-62, 2014.

[19]. S.F. Kurmangaleev, V.P. Korchagin, V.V. Savchenko

S.S. Sargsyan, "Building an obfuscation compiler based on

LLVM infrastructure", The Proceedings of ISP RAS, pp. 77-

92, 2012.

[20] http://theory.stanford.edu/~aiken/moss/

[21] http://www.semdesigns.com/products/clone/

[22]. Chanchal K. Roya, James R. Cordya, Rainer Koschkeb,

"Comparison and evaluation of code clone detection

techniques and tools: A qualitative approach", Science of

Computer Programming, pp. 470-495, 2009.

0

5

10

15

Source code lines

(million lines)

0

0.5

1

1.5

2

2.5

Compilation time

(hours)

Compilation time

with PDGs'

generation (hours)

0

500

1000

1500

2000

2500

Detectes clones

False Positive

http://www.llvm.org/
http://theory.stanford.edu/~aiken/moss/
http://www.semdesigns.com/products/clone/

