
Code Clones Detection Based on Semantic Analysis for

JavaScript Language*

Sevak, Sargsyan

ISP RAS

Moscow, Russia

e-mail: sevaksargsyan@ispras.ru

Shamil, Kurmangaleev

ISP RAS

Moscow, Russia

e-mail: kursh@ispras.ru

Vahagn, Vardanyan

ISP RAS

Yerevan, Armenia

e-mail: vaag@ispras.ru

Vachagan, Zakaryan

ISP RAS

Yerevan, Armenia

e-mail: zakaryan@ispras.ru

ABSTRACT
Existed methods of code clones detection for JavaScript

programs are based on textual, lexical or syntactic analysis.

These methods have relatively low accuracy and cannot

detect strongly modified fragments of code. The article

describes а new method of code clone detection for

JavaScript programming language based on semantic

analysis of the program. Due to using of Program

Dependence Graphs (PDG) the method detects strongly

modified fragments of code as well as exact clones. It has

high accuracy and is scalable for analysis of million lines of

source code. Comparison results with CloneDR have shown

that the proposed method detects about ten times more

clones with recall higher than sixty percentages. Manual

analysis of detected clones has shown that the rate of false

positive for new method is lower than five percentages.

The method is implemented as part of V8 JavaScript

compiler. It generates PDG graphs for JavaScript functions

based on V8’s intermediate representation named Hydrogen.

For generated PDGs a special tool is applied to detect code

clones. The tool detects maximal isomorphic subgraphs,

which are considered as clones. Set of scripts are developed

for parallel run of the tool in multiprocessor systems and

analyzing detected clones.

Keywords
Code clone, PDG, JavaScript, V8

1. INTRODUCTION
JavaScript language has become very popular due to its

minimal verbosity, code maintainability, and ease of rapid

prototyping. JavaScript is now used not only for executing

small scripts in web browsers, but also as the main language

for developing applications on some operating systems for

mobile and media devices, such as Tizen [1] or FirefoxOS

[2]. During the development of large software systems copy-

paste activities by the software developers become usual.

Reusing code can lead to many semantic errors. For

example, software developer can forget to rename some

variables or functions after copy-paste. The software, which

has many clones, probably will have many mistakes and low

quality. According to different studies [3, 4] up to 20 percent

of source code can be clone in software. Clone detection

tools are widely used during software maintaining. It allows

to avoid mistakes and improves software quality.

The goal of this paper is to introduce a code clone detection

method for JavaScript programming language, based on

semantic analysis. It consists of two basic stages. The first

part transforms V8’s Hydrogen representation of JavaScript

source to PDG. PDGs are constructed during execution of

Crankshaft (see section 2.1) and serialized into files. The

second part is a separate tool [5] for analyzing the stored

PDGs to

*
 The paper is supported by RFBR grant 15-07-07541

detect code clones. It detects maximal isomorphic subgraphs

as code clones. Introduced method of clone detection has a

number of applications for JavaScript projects:

1. Automatic refactoring.

2. Code size optimizations. Repeated fragments of

code can be replaced by call of one function.

3. Semantic errors detection. If one fragment of code

contains a semantic error all clones of this

fragment will have the same error with high

probability.

Three scripts are provided for parallel run of the tool [5] in

multiprocessor systems and analyzing detected clones.

2. BACKGROUND

2.1. V8 JIT compiler
V8 is Just-in-time compiler for JavaScript language. It has

two separate compilers for source code compilation into

machine code (Fig. 1). The first compiler is Full-Codegen,

which compiles source code directly into machine code in

order to produce code quickly. The second compiler is called

Crankshaft, which is slower and produces an optimized

machine code. At first V8 parses source code into abstract

syntax tree (AST) and uses Full-Codegen to produce the

machine code quickly. During the execution of code

generated by Full-Codegen profile information for the

program is collected, such as type information, inline caches,

etc. At the same time runtime profiler samples JavaScript

code in order to determine hot (frequently executed)

functions.

Figure 1. V8 JIT Architecture

Hot functions are recompiled by the Crankshaft compiler.

Crankshaft translates AST code into control flow graph

(CFG) with SSA-like representation called Hydrogen.

Collected type and other runtime information allow

Crankshaft to optimize the functions speculatively, under the

assumption that certain properties of the functions will not

change during the next run. Hydrogen representation is used

to implement many well-known optimizations, such as dead

code elimination, constant propagation, common

subexpression elimination, bounds redundant check

elimination, loop invariant code motion, etc. During

execution, if the optimized code encounters a case that it

cannot handle (for example, when type of value of the

variable does not match profile information), it bails to the

code generated by Full-Codegen. This transition is called an

on-stack replacement. After all optimizations are performed

on Hydrogen graph it is transformed to low-level, machine-

dependent intermediate representation called Lithium. This

representation is closer to three-address code, with labels and

"goto" instructions. Each Lithium instruction has its output,

input and temporary operands. Register allocation is

performed in Lithium representation, and then a binary code

is generated.

2.2. Clone types
Clone types are categorized in three basic groups [6]. The

first group is identical code fragments except the variations

in whitespaces (T1). The second group is identical code

fragments except the variations in identifiers, literals, types,

layout and comments (T2). The third group is copied

fragments of code with further modifications.

2.3. Code clone detection approaches
Numbers of approaches [7, 8] were provided for code clones

detection, but they have some restrictions. Textual approach

[9] considers the source code of the program as a text and

tries to find matched substrings as code clones. When all

clones are detected, the clones which are located nearby can

be combined into one. Methods based on lexical approach

[10, 11] parse source code to sequence of tokens. Longest

common subsequences of tokens are considered as code

clones. These two approaches cannot detect clones of (T3)

type. In case of syntactic approach [12, 13] AST is analyzed

instead of source code. Code clones are matched subtrees of

AST. Methods based on this approach are more effective for

detecting clones of (T1) and (T2) types; (T3) types of clones

are detected with low accuracy, because the added or deleted

instructions strictly change the structure of AST. Methods

based on semantic analysis [5, 14, 15] translate source code

to PDG. Nodes of PDG are instructions of the program.

Edges of PDG are dependences between the instructions.

Isomorphic subgraphs of PDG are considered as code clones.

Algorithms based on semantic analysis have high

computational complexity, but able to detect all three types

of clones with high accuracy. Metrics-based algorithms [16,

17, 18] compute a number of metrics for code fragments and

compare them. This approach has low accuracy. For

qualitative analysis of software systems, (T3) clones should

be detected as well as others. The tool [5] which we use for

code clone detection is semantic based. It allows detecting

all three types of clones with high accuracy.

3. TRANSLATION FROM HYDROGEN

TO PDG

3.1. Hydrogen
Hydrogen's structure is very similar to intermediate

representation of LLVM [19]. Hot functions are parsed to

abstract syntax tree (AST). Based on AST and profile

information Hydrogen is constructed. It is represented as a

control flow graph of basic blocks where each block contains

a sequence of instructions in static single assignment (SSA)

form. Each instruction has a list of operands and a list of

uses. So Hydrogen is a data flow graph being layered on top

of the control flow graph. Each Hydrogen instruction

represents a fairly high-level operation, such as an arithmetic

operation, a property load or store, a function call or a type

check.

3.2. PDG
Program dependence graph is the most detailed

representation for the program. It contains control and data

flow information, information about variables aliasing. PDG

is a directed graph where nodes are instructions, edges are

dependences between the instructions. It contains two basic

types’ of edges. The first type is control edges which

represent the control flow graph for the program. The second

type is data dependences, which has three categories for pair

of nodes:

1. True-dependence means that value written to the

memory by the first instruction is read second;

2. Anti-dependence means that value written to the

memory by the second instruction is read first.

3. Output-dependence means that two instructions are

write to the same memory.

3.3. Translation
For every instruction of Hydrogen a new PDG node is

constructed. Type of constructed node is determined based

on type of the corresponding Hydrogen instruction. Every

node has information about source code line from which it

was constructed. Between two nodes of PDG a data edge is

added if the corresponding instructions of Hydrogen have

true-dependence, anti-dependence or output-dependence.

Control dependences are added based on analysis of

Hydrogen’s basic blocks. Between two nodes of PDG a

control edge is added if the instruction corresponding to the

first node executed before the instruction corresponding to

the second node. When Hydrogen is translated to PDG it is

serialized to file. Serialization format is acceptable for the

tool [5] used for clone detection.

4. ANALYZE SCRIPTS
Three scripts are developed for parallel run of the tool and

analyzing detected code clones. The first script is responsible

for parallel run of the tool in multiprocessor systems. The

tool as input takes one or two lists of PDGs. For the single

list input the tool makes pairwise comparison of all PDGs

from this list. In case of two lists, the tool compares PDGs

from different lists. The script splits the list of PDGs for the

project to smaller lists. Number of split lists depends on the

number of processors and memory size. For all single small

lists and different pairs of these lists the instance of the tool

is run. In case of 𝑝 processors PDGs’ list should be split at

least to 𝑥 smaller lists, where 𝑥 =
−1 + √1+ 8𝑝

2
. Otherwise

the resources of target machine will not be fully used. If the

memory of target machine is not enough for analyzing of

pair of sublists then the number of sublist should be

increased.

The second script is responsible for visualization of detected

clones. It allows showing source code and corresponding

PDG graphs for detected clone. The script supports HTML

and EXEL output formats for detected clones.

The third script analyzes files of detected clones. It allows

tracking history of cloned fragments of code for the files.

Tree of files is constructed based on cloning history. User

can interactively move through the tree of files and follow

modifications of the cloned fragments of code.

5.1. Detected clones
Developed method was applied for three widely used
JavaScript benchmarks. Target machine is Intel Core 2 Duo
CPU E7400 with 8 GB of RAM. Minimal clone length is 10
lines of source code and similarity higher than 90%.

Figure 2. Size of PDGs.

Figure 2 shows sizes of generated PDGs for JavaScript

benchmarks.

Figure 3. Source code lines.

Figure 3 shows lines of source code for analyzed projects.

Figure 4. Clone detection time.

Figure 4 shows run time of the clone detection tool [5] for

generated PDGs.

Figure 5. Number of detected clones.

Figure 5 shows the number of detected code clones and the

rate of false positive. For example, for the Octane

benchmark 342 code clones are detected and 5 of them are

false positive. Clone detection time is 428 seconds. Octane

has about 357.000 lines of source code written in JavaScript.

SunSpider has 10 code clones, only one is false positive. For

the Kraken tool does not detect any clone.

5.2. Comparison with CloneDR
Developed method was compared with the tool CloneDR

[20], which is developed by Semantic Designs Company.

The company provides different tools for software design

and analyses. Minimal clone length is 10 lines of source

code and similarity higher than 90%. Target test is octane

benchmark. CloneDR has detected 35 clones. Our tool has

detected 342 clones, 21 of them were common with

CloneDR results.

6. FUTURE WORK
V8 is JIT compiler so functions are compiled if only they are

called. It means that PDG graphs are generated only for the

functions which were called during the execution time. If

some fragments of JavaScript code are clones, but not

executed, they will not be detected as clones. We are

planning to make V8 generate Hydrogen graphs for all

functions ether they are called during the execution time or

not.

7. ACKNOWLEDGEMENT
The paper is supported by RFBR grant 15-07-07541.

REFERENCES
[1] Tizen platform website. http://tizen.org/

[2] Mozilla website. https://www.mozilla.org

[3] B. Baker, "On finding duplication and near-duplication in

large software systems", in: Proceedings of the 2nd Working

Conference on Reverse Engineering, WCRE 1995, pp. 86-

95, 1995.

[4] C.K. Roy, J.R. Cordy, "An empirical study of function

clones in open source software systems", in: Proceedings of

the 15th Working Conference on Reverse Engineering,

WCRE 2008, pp. 81-90, 2008.

[5]. S. Sargsyan, S. Kurmnagaleev, A. Belevantsev, H.

Aslanyan, A. Baloian, "Scalable code clone detection tool

based on semantic analysis", The Proceedings of ISP RAS,

pp. 39-49 2015.

[6]. Bellon S., Koschke R., Antoniol G., Krinke J., Merlo E.,

"Comparison and evaluation of clone detection tools",

Transactions on Software Engineering 33 pp. 577–591,

2007.

[7]. D. Rattana, R. Bhatiab and M. Singhc, "Software clone

detection", Information and Software Technology, vol. 55,

no. 7, pp. 1165-1199, 2013.

[8]. S. Gupta and P. C. Gupta, "Literature Survey of Clone

Detection Techniques", International Journal of Computer

Applications, vol. 99, no. 3, pp. 41-44, 2014.

[9]. S. Ducasse, M. Rieger, S. Demeyer, "A language

independent approach for detecting duplicated code", in:

Proceedings of the 15th International Conference on

Software Maintenance (ICSM’99), Oxford, England, UK,

pp. 109-119, 1999.

[10]. T. Kamiya, S. Kusumoto, K .Inoue, CCFinder: "A

multilinguistic token-based code clone detection system for

large scale source code", IEEE Transactions on Software

Engineering, vol. 28, no. 7, pp. 654-670, 2002.

0
5

10
15
20
25
30

Size of PDGs in
megabytes

0

100000

200000

300000

400000

Source code
lines

0
100
200
300
400
500

Clone
detection time
in seconds

0

100

200

300

400

Number of
detected
clones

False positive

5. EXPEREMENTAL RESULTS

http://tizen.org/
https://www.mozilla.org/

[11]. R. Kaur, S. Singh, "Clone detection in software source

code using operational similarity of statements", ACM

SIGSOFT Software Engineering Notes, Volume 39 Issue 3,

pp. 1-5, 2014.

[12] I. Baxter, A. Yahin, L. Moura, M. Anna, "Clone

detection using abstract syntax trees", in: Proceedings of the

14th IEEE International Conference on Software

Maintenance, IEEE Computer Society, pp. 368-377, 1998.

[13] L.Jiang, G.Misherghi, Z.Su, S.Glondu, "DECKARD:

Scalable and accurate tree-based detection of code clones",

in: Proceedings of the 29th International Conference on

Software Engineering (ICSE07), IEEE Computer Society,

pp. 96-105, 2007.

[14] R.Komondoor, S.Horwitz, "Using slicing to identify

duplication in source code", in: Proceedings of the 8th

International Symposium on Static Analysis, pp. 40-56,

2001.

[15] J. Krinke, "Identifying similar code with program

dependence graphs", in: Proceedings of the 8th Working

Conference on Reverse Engineering, (WCRE 2001), pp.301-

309, 2001.

[16] J. Mayrand, C. Leblanc, E. Merlo, "Experiment on the

automatic detection of function clones in a software system

using metrics", in: Proceedings of the 12th International

Conference on Software Maintenance (ICSM96), Monterey,

CA, USA, pp. 244-253, 1996.

[17] N. Davey, P. Barson, S. Field, R. Frank, "The

development of a software clone detector", International

Journal of Applied Software Technology, vol 1, no. 3/4, pp.

219-236, 1995.

[18]. S. S. Sargsyan, S. F. Kurmangaleev, A. V. Baloian, H.

K. Aslanyan, "Scalable and Accurate Clones Detection

Based on Metrics for Dependence Graph", Mathematical

Problems of Computer Science 42, pp. 54-62, 2014.

[19]. http://www.llvm.org

[20] http://www.semdesigns.com/products/clone/

http://www.llvm.org/
http://www.semdesigns.com/products/clone/

