
Integrated Register Rematerialization in JavaScript V8 JIT

Compiler

ABSTRACT
Nowadays most prominent dynamic languages, such as

JavaScript, Python and Lua use Just-in-time (JIT)

compilation technique to generate machine code. JIT

compilers are limited in a complexity of optimizations they

can perform without delaying the program execution. This

paper is dedicated to the improvement of generated machine

code quality for JavaScript programs. Our approach is to

introduce a register rematerialization technique to JavaScript

V8 JIT compiler. We have integrated instruction

rematerialization with V8’s linear scan register allocation to

minimize the impact on compilation time. Both direct and

reverse register rematerialization techniques are

implemented in JavaScript V8 compiler and resulted in

performance gain and code quality improvement for some

JavaScript well-known benchmarks on ARM [1] platform.

Keywords
JavaScript, JIT, V8, register rematerialization, register

allocation, spill code minimization

1. INTRODUCTION

1.1 Dynamic languages compilers
JavaScript language has gained increasing popularity due to

its minimal verbosity, code maintainability, and ease of rapid

prototyping. Due to increasing performance of personal

computers and embedded systems, JavaScript is now used

not only for executing small scripts in web browsers, but

also as the main language for developing applications on

some operating systems for mobile and media devices, such

as Tizen [2] or FirefoxOS [3]. Dynamic properties of

JavaScript language, such as presence of dynamic types and

prototypes that can change during the execution make it

almost impossible to compile the code effectively with static

compiler without restricting the language features. Many

recent works are focused on producing and improving of

optimizing compilers for dynamic languages [4, 5]. Though

the details of their approaches vary, the common technique

used by today’s state-of-the-art compilers (IonMonkey, V8,

JSC LuaJIT, PyPy) is Just-in-time (JIT) compilation, where

the compiler produces optimized code at runtime. To

implement a tradeoff between quick startup and doing

sophisticated optimizations, JavaScript engines usually use

multiple tiers: lower tier JITs generate less efficient code, but

can start almost immediately (e.g. even with interpretation),

while higher tier JITs aim at generating effective code for

hot places, but at the cost of long compilation time. JIT

optimization takes advantage of the program’s runtime

behavior collected from the profiler to explore more

optimization opportunities. Based on the assumption of the

steady states, optimizations such as type specialization,

inline caching for dynamic dispatch and profile-directed

method inlining are applied.

1.2 Register allocation and

rematerialization
Although being an old computer problem, register allocation

remains an important optimization to address CPU/memory

performance gap. There are many works dedicated to

register allocation problem [6, 7]. One of the well-known

techniques is register allocation through graph coloring.

Unfortunately, graph coloring and other aggressive global

register allocation algorithms are computationally expensive

and using them in JIT compiler may have big impact on

compilation time and delay program execution. Therefore,

V8 compiler uses global register allocation algorithm called

linear scan [8], which is simple, efficient, produces relatively

good code and has less impact on compilation time than the

traditional register allocation algorithms. During register

allocation, when register pressure (the number of

simultaneously live variables) is too high one can spill the

data of one register into memory and reload it later when it

needed, or alternatively one can try to recompute it from

values currently still alive. The latter technique is called

rematerialization.

In this paper, we describe the implementation of both direct

and reverse register rematerialization in JavaScript V8

compiler. We have implemented the rematerialization
technique integrated with linear scan register allocation and

using advantage of V8’s internal structures to minimize the

impact on compilation time.

2. RELATED WORK
There are a number of works about register rematerialization
problem [9, 10]. This optimization is implemented in several

leading industrial compilers such as GCC [11] and LLVM

[12]. Several recent works are dedicated to register reverse

rematerialization technique [10]. Many of these algorithms

use data dependency graphs (DDG) and register reuse chains

to discover excessive registers and to detect rematerializable

values. Once rematerialization decision is made, DDG

transformation is done in order to move rematerializable

values after the excessive nodes. Taking into account that V8

uses control flow graph (CFG) [13] as intermediate

representation for its optimizing compiler (Crankshaft),

building new data dependency graph, constructing reuse

chains and performing graph transformation can result in big

negative impact on compilation time, in fact, it can even

cause program performance degradation. In order to reduce

memory access instructions count without negative impact

on compilation time we are using v8’s linear scan register

allocation and its internal structures to implement register

rematerialization.

Vahagn, Vardanyan

ISPRAS

Yerevan, Armenia

e-mail: vaag@ispras.ru

Seryozha, Asryan

ISPRAS

Yerevan, Armenia

e-mail: asryan@ispras.ru

Ruben, Buchatskiy
ISPRAS

Moscow, Russia

 e-mail: ruben@ispras.ru

3. V8 JIT compiler Multi-Tier

Architecture
V8 compiles source code into machine code using two

separate compilers as shown in Fig. 1. The first compiler,

Full-Codegen, compiles source code directly into machine

code without any optimizations in order to produce code

quickly. The second compiler, Crankshaft, is slower and

produces optimized machine code. V8 first parses source

code into abstract syntax tree (AST) and uses Full-Codegen

compiler to produce code quickly without any optimizations.

While executing unoptimized code, program profile

information data is collected, such as type information, inline

caches [14], etc. At the same time runtime profiler samples

JavaScript code in order to determine hot (frequently

executed) functions. When hot function is detected, V8 starts

compiling that function using Crankshaft compiler.

Crankshaft translates AST code into control flow graph

(CFG) with SSA-like representation named Hydrogen. This

representation is used to implement many well-known

optimizations, such as dead code elimination, constant

propagation, common subexpression elimination, bounds

redundant check elimination, loop invariant code motion, etc

[15]. Collected type and other runtime information allows

Crankshaft to optimize functions speculatively, under the

assumption that certain properties of the functions will not

change during the next run. If the optimized code encounters

a case that it cannot handle (for example, when type of value

of the variable does not match profile information), it bails to

unoptimized code (Full-Codegen). This transition is called

on-stack replacement.

Figure 1. V8 Multi-Tier JIT Architecture

When all optimizations are performed, Crankshaft transfers

Hydrogen graph to low-level, machine-

dependent intermediate representation called Lithium. This

representation is mainly used for the register allocation.
Unlike Hydrogen, which is in SSA form, the Lithium form is

closer to three-address code, with labels and gotos. Each

Lithium instruction is represented by its output operand,

input operands and temporary operands. These operands are

initially declared with a number of constraints. For example,

if the result of some instruction is a double number, its

output will be declared with "operand must be in a double-

precision register" constraint. Later, a register allocator

considers the constraints and live intervals, and allocates

each operand to a specific register or memory address. Code

generation happens after register allocation.

4. Linear scan register allocation
Register allocation is the task of assigning local variables

and temporary values to physical registers of a processor.

The register allocation phase of code generation is often a

bottleneck, and yet good register allocation is necessary for

making today's processors reach their peak efficiency. It is

thus important to understand the trade-off between the speed

of register allocation and the quality of the resulting code.

A linear-scan register allocation [8] algorithm directs the

global allocation of register candidates to registers based on

a simple linear sweep over the program being compiled. It

uses liveness information to find an appropriate candidate for

allocating to physical register. This approach to register

allocation makes sense for systems, such as those for

dynamic compilation, where compilation speed is important.

A live interval of a value v is the range [i, j[such as i is the

instruction where v is first defined and j is the position

where v ends living. Live intervals are obtained from

variable liveness analysis. Fig 2 shows live intervals

computed for several instructions.

Figure 2. A simple instructions sequence and its live

intervals

The linear scan algorithm first sorts all live intervals in

ascending order of their starting point. The basic algorithm

processes all live ranges maintaining list of active intervals

(the intervals that overlap the start point of current interval).

For every live interval i the algorithm performs these steps:

 Initially all registers are free.

 If there is live interval j in active that is already

expired before i begins (i.e. j.end ≤ i.beg), remove

it from active and add j.reg to the set of free

registers.

 If there are still free registers, assign one of them

to i and add i to active. If there are no free

registers, spill the interval with the farthest end

point among i and all the intervals in active. If an

interval from active was spilled, then assign its

register to i, and add i to active.

Assuming that we have two physical registers, r1 and r2,

algorithm processes the intervals as shown in Fig. 3.

The above algorithm describes the basic idea of linear scan

register allocation. There are many improvements of this

algorithm including live intervals splitting, more advanced

spilling heuristic, hoisting spill code out of loops (if

possible), etc. When a spilling decision is made, the

algorithm can split the interval in a such way that some parts

of the interval can still reside in physical register, e.g. the

interval can be split across loops, or other hot code regions,

so the part of interval which is in hot region can reside in

physical register. The refined version of linear scan

algorithm (called second-chance binpacking) was described

by Traub et al. [16]. Although more complicated, this

algorithm results in a better usage of registers.

Figure 3. Result of linear scan algorithm

5. Integrated register direct and reverse

rematerialization
Though linear scan register allocation is one of the best

algorithms to use in JIT compilers, it still has to insert spill

code to resolve all architecture and program constraints (spill

code must be inserted when register pressure is high, some

architectures require specific registers for some operations,

procedure calls can rewrite all register, etc.). One of the

important features of good register allocator is to minimize

spill code. However, most problems of spill code

minimization are known to be NP-complete [17]. Linear

scan allocation uses live interval splitting and various

spilling heuristics (e.g. spilling the interval with the largest

end point) to reduce spill code. Another method of spill code

minimization is rematerialization. Recomputation of some

value v can be performed from its input operands still stored

in registers; recomputation is done in the same way as

specified in the program. But there is a part of information of

v carried by other values {wi} that were computed from v.

Figure 4. Example of register direct rematerialization

Hence, this gives new opportunities for recovering v value:

undoing the computation from {wi} values, or in other words,

reversely computing v.

An example of direct rematerialization is shown in Fig. 4.

Let’s suppose that there are four general purpose registers

(r0-r3), r4 is a scratch register. It is used to hold reloaded

spilled values immediately before their use points. Value c

can be recomputed from values a and b because they are

alive during the lifetime of c. As shown in Fig. 4.c we can

replace two memory access instructions with one cheaper

add instruction.

In our implementation, rematerialization is performed after

register allocation because of the following reasons:

 Before register allocation there is no information

about certain register requirements or excessive

register demands.

 Implementing rematerialization before register

allocation can insert additional constraints, create

more dependencies and extend live intervals for

values.

After register allocation all the information about excessive

registers, spilled live intervals and rematerializable values is

available.

When making rematerialization decision it is important to

take into account whether recomputation of some value will

be cheaper than reloading it from memory. For example, on

several ARM processors it is cheaper to reload the spilled

value than to recompute it using multiply instruction if that

value is in L1 data cache [1]. In our current approach,

addition, subtraction, shift and bitwise instructions are

supported for direct rematerialization (all these instructions

are cheaper than memory access instructions on ARM

platform). Multiply and division instructions are supported

partly, in the cases when they can be implemented using

shift instructions. Operands of addition and subtraction

instructions can be reversely recomputed if the output

operand and one of the input operands are available.

However, this rule is not common for all binary operations.

For instance, the multiply operation needs at least one

additional resulting bit for determining which of both

operands was 0 if the result is 0. In our current

implementation, only addition and subtraction instructions

are supported for reverse rematerialization. Our approach

can be logically divided into five steps.

The first step of our approach is to detect all possible

rematerializable values. We have modified Hydrogen to

Lithium transformation phase to assign both direct and

reverse rematerialization information to corresponding

instructions. In the Lithium level value c (Fig. 4.a) is

represented as an output operand of instruction 3 (OutputC3)

and an input operand of instructions 5 (InputC5) and 6

(InputC6) (all these operands will be mapped to the same

register or memory address). OutputC3 can be recomputed

by direct rematerialization from a and b, InputC5 can be

recomputed by reverse rematerialization from e and d,

InputC6 by reverse rematerialization from f and b.

Rematerialization information is assigned to all these

operands (LOperands). The second step is to propagate

obtained information to the variables' live intervals.

Assuming that instruction 6 is the last use of value c, the live

interval of c is [3, 7[with use positions 5 and 6. During live

intervals building phase we pass rematerialization
information from LOperands to live intervals, so the live

interval of c will contain information from OutputC3,

InputC5 and InputC6. Hence, each use position of that

interval (each use of value c) has three possible options to be

recomputed. The third step is to modify spilling heuristic of

register allocation in order to increase the possibility of

Source code

1: ... a;

2: …b;

3: c = a + b;

4: d = a + 5;

5: e = c – d;

6: f = c + b;

7: …a

Generated machine code

without rematerialization

1: ldr r0, a

2: ldr r1, b

3: add r2, r0, r1

4: str r2

5: add r2, r0, 5

6: ldr r4, &c

7: sub r3, r4, r2

8: add r2, r4, r1

Generated machine code

with rematerialization

1: ldr r0, a

2: ldr r1, b

3: add r2, r0, r1

4: add r2, r0, 5

5: add r4, r0, r1

7: sub r3, r4, r2

8: add r2, r4, r1

a)

b) c)

spilling live intervals with rematerialization information on

the one hand, and decrease possibility of spilling the live

intervals that are being used for recomputation of

rematerializable values on the other hand. After this step, the

values with rematerialization information are more likely to

be spilled into memory, and the values, which are used for

recomputation of spilled values, are more likely to reside in

machine registers. The forth step is performed after register

allocation. We iterate through all spilled live intervals which

are marked as rematerializable and try to validate

rematerialization information attached to their use positions,

i.e. proving that the operands needed to recompute value at

the given use position are alive and still reside in machine

registers. After linear scan register is completed, all the

necessary information for validating rematerialization
information can be obtained from the variable live intervals

(e.g. if certain variable is alive at the given point, if it is

allocated into memory or register)

Finally, we have modified the code generation phase, so

operands with valid rematerialization information are

recomputed instead of being reloaded from memory. As

mentioned above V8’s linear scan allocator can split live

interval of some value in a way that the parts of the interval

may be allocated to different memory locations. After

allocation is completed, allocator must insert move

instructions (register to register, register to memory, memory

to register or memory to memory) on the boundaries of split

intervals. Such move instructions are also inserted for

resolving control flow constraints (e.g., the same value can

flow to basic block from two or more different edges). Our

implementation of register rematerialization takes advantage

of these cases as well and can recompute values on the live

intervals boundaries, too.

6. Experimental Results
We have tested our approach on several JavaScript well

known benchmarks such as SunSpider [18], Kraken [19] and

Octane [20]. In SunSpider benchmark, we have managed to

replace up to 30 memory access instructions to cheaper

arithmetic instructions. On some tests, we have managed to

replace 5-8 memory access instructions in nested loops, but

unfortunately, these improvements of generated machine

code have no effect on the performance of SunSpider

benchmark. The reason is that SunSpider tests execution

time is very short and they do not have heavy loops, so

replacing memory access instructions to arithmetic ones

even in the nested loops brings no impact on overall

performance. On the contrary, Kraken benchmark’s tests

contain many complex nested loops. Our algorithm could

replace up to 8 memory access instructions from nested

loops in Kraken’s audio-beat-detection test, which brings

approximately 5% performance improvement on ARM

platform. Similarly, replacement of 8 loads from memory

instructions from nested loops in Kraken’s audio-fft test

brings about +7% performance improvement on this test.

About 5 memory access instructions are replaced in

stanford-crypto-ccm and imaging-darkroom tests. On Octane

benchmark we have managed to replace up to 200 memory

access instructions. Approximately 5-10 memory access

instructions have been replaced in CodeLoad, Zlib and

Typescript tests, 20-30 instructions in Crypto, Pdf and

NavierStokes tests, 45 in Gameboy and more than 70 load

instructions in Mandreel test. It brings approximately 1-2%

performance improvement on GameBoy and 3-4% on

Mandreel tests.

Due to our implementation of rematerialization adds only

one linear pass through all spilled live intervals, the impact

on compilation time is minimal. In fact, there was no

observed performance degradation on JavaScript

benchmarks we have tested.

7. Conclusion
We have developed both direct and reverse register

rematerialization technique in V8 open source JavaScript

engine for ARM platform. Experimental results on popular

JavaScript benchmarks (Octane, SunSpider, Kraken,

Browsermark) show up to 7% speedup on certain tests

without any performance degradation on the others.

We plan to continue our work by adding rematerialization

support for other platforms (x86, etc).

REFERENCES
[1] ARM architecture. http://infocenter.arm.com

[2] Tizen platfrom website. http://tizen.org/

[3] Mozzila website. https://www.mozilla.org

[4] Google Inc. V8 - Project Hosting on Google Code.

http://code.google.com/p/v8/

[5] A. Gal; B. Eich; M. Shaver; D. Anderson; D. Mandelin;

M. R. Haghighat; B. Kaplan; G. Hoare; B. Zbarsky; J.

Orendorff; J. Ruderman; E. Smith; R. Reitmaier; M.

Bebenita; M. Chang; M. Franz, “Tracebased just-in-time

type specialization for dynamic language,” In Proceedings of

the Conference on Programming Language Design and

Implementation, pages 465–478, 2009

[6] G. Chaitin et al., “Register Allocation via Coloring,”

Computer Languages, 6, pp. 47–57, 1981

[7] G. J. Chaitin, “Register Allocation and Spilling via Graph

Coloring,” SIGPLAN Notices, 17(6):201–107, June 1982

[8] M. Poletto, and V. Sarkar. “Linear scan register

allocation.” ACM Transactions on Programming Languages

and Systems (TOPLAS), v.21 n.5, p.895-913, Sept. 1999

[9] Mukta Punjani. “Register rematerialization in gcc.” In

GCC Developers’ Summit 2004, June 2004

[10] Bahi, M., Eisenbeis, C. “Rematerialization-based

register allocation through reverse computing.” In:

Proceedings of the 8th ACM International Conference on

Computing Frontiers, CF ’11, pp. 24:1– 24:2. New York,

NY, USA, ACM (2011)

[11] Gnu Compiler Collection website. http://gcc.gnu.org/

[12] Chris Lattner. “LLVM: An Infrastructure for Multi-

Stage Optimization.”— Master’s thesis, Computer Science

Dept., University of Illinois at Urbana-Champaign, Urbana,

IL

[13] Bruce A. Cota, Douglas G. Fritz, Robert G. Sargent

“Control flow graphs as a representation language”

Simulation Conference Proceedings, 1994. Winter

[14] Urs Hölzle, Craig Chambers, David Ungar “Optimizing

Dynamically-Typed Object-Oriented Languages With

Polymorphic Inline Caches” ECOOP '91 Proceedings of the

European Conference on Object-Oriented Programming, 21-

38, 1991

[15] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D.

Ullman “Compilers : principles, techniques, and tools”, 583-

703, 2006.

[16] Traub, O., Holloway, G., Smith, M.D.: “Quality and

Speed in Linear-Scan Register Allocation.” Proceedings of

the ACM SIGPLAN Conf. on Programming Language

Design and Implementation 142-151, 1998

[17] Florent Bouchez. “A Study of Spilling and Coalescing

in Register Allocation as Two Separate Phases.” PhD thesis,

ENS Lyon, 2009

[18] SunSpider benchmark website:

http://www.webkit.org/perf/sunspider/sunspider.html

[19] Kraken benchmark website:

http://krakenbenchmark.mozilla.org/

[20] Octane benchmark website:

https://developers.google.com/octane/

http://infocenter.arm.com/
http://tizen.org/
https://www.mozilla.org/
http://code.google.com/p/v8/
http://dl.acm.org/author_page.cfm?id=81100400656&coll=DL&dl=ACM&trk=0&cfid=535454631&cftoken=85410481
http://www.webkit.org/perf/sunspider/sunspider.html
http://krakenbenchmark.mozilla.org/

