
Programming into Graphs of a New Generation and
the Single Graphical Shell for All Languages

Velbitskiy, Igor
Glushkov's Fund

Kiev, Ukraine
e-mail: ivelbit@gmail.com

ABSTRACT
In programming into graphs of a new generation it is for the
first time offered not to write and draw programs during their
entire life cycle by using graphs from mathematics which are
loaded with only horizontal arcs (ISO 8631: 1989). Drawing
is easier and faster, especially for the touch screen. All the
traditional (since 1947) machine-oriented operators like if,
for, goto and brackets begin-end are excluded from
programming. They are outdated. For a human they are too
many, too complex, empirical (not strictly defined), and
primitive (small power). To neutralize them a human spends
too much efforts to create a huge number of languages,
systems and environments of programming that are
"supposedly easier," but in fact they divide specialists and
make programming too complicated and inaccessible to all.
Instead of this of all, only one (mathematically rigorous)
simple graphical and human-oriented essence (R-scheme) is
offered. As a result, programming is simplified, accelerated
and improved many times, has a proof of the correctness of
programs and the programming process, and self-documenting
including documenting the motivation of made decisions, and
supports mathematical derivation and automatic generation of
programs and the tests for them. A software program depicted
in this graphical notation is 100 or more times smaller and
easier to read and comprehend compared with the traditionally
recorded programs, in the form of texts in modern
programming languages in flow-charts, and in UML-
diagrams. Unlike the latter, R-scheme does not contain
complex profiles (forms), only one graphical structure that is
used throughout the life cycle of programs for recording and
algorithms, as well as software projects, computer codes, the
network schedule and program documentation. Programming
for the first time gets the mathematical basis (the graph
theory) and is available to all.

Keywords
Polyglot Programming, Visual programming, Programming
into graphs, graphs loaded along arcs, RR*-schemes, a
graphical shell of programs, compactness, easy
programming, quick entry into the computer, proof of
correctness of program, network diagrams, 3D
programming, automatic programs and tests generation

1. INTRODUCTION
Programming by using graphs (GP) began to emerge in the
'70s with the development of computer control systems and
space missile complexes in former Soviet Union and the
formal recognition of the need to document the process of
software development to facilitate the rapid introduction of
permanent fixes and improvements and also was facilitated
by the work of Dijkstra [1], who for the first time has
proven redundancy of traditional programming operators and
primitive artisanal nature of the organization of work with
them. As a result of GP development, it has been proposed to
abandon all traditional computer-oriented statements of
programming languages and use math graphs instead, which

were called R-schemes, where «R» is from word «rational»
[2]. A concept of drawing has been introduced into
programming as a basic documentation unit for a program
under development. This documentation, which is a visual or
graphical representation of the product, coincides with the
product itself - the program. This was not achieved in
programming and in any traditional industries (aerospace,
automotive, construction, etc.)

R- schemes are loaded only on the horizontal arcs and used
throughout entire software development life cycle (SDLC) of
development only of graphic programs. This greatly
simplified and speeded up the development of programs to
ensure their effectiveness from memory and CPU
perspectives, making them self-documenting and compact
100 times or more.
Later it became clear the versatility of the proposed
guidelines [3-8] and compatibility of GP with all the
innovations of modern programming (OOP, AOP, WEB,
etc.), which were carried out in order to neutralize the
disadvantages of traditional operators of programming
languages. New opportunities for GP, which are still absent
in traditional programming, have been identified: proof of
program correctness, automatic test generation, and
automatic generation of programs, matching the type of
programs (project, code and documentation) with the
network graph of its development, the widespread use of
color, 3D-programming, etc. It became clear continuity with
what has been achieved before GP, and the possibility of
introducing the new without destroying what is good in
traditional programming.

2. THE ESSENCE OF PROGRAMMING
 INTO THE NEW GRAPHS
In GP (ISO 8631: 1989 [5]), instead of the traditional
operators of the type if, for, go to, etc. (total number is about
10) only one horizontal arc - R- scheme – is encouraged to
be used throughout the entire life cycle of a program
development. Figure 1 presents an R-scheme with two nodes
and one horizontal arc which has a Condition written above
the arc, and one or more Actions written below the arc that
are executed if the condition is "true." For condition and
actions entries in one or more lines any language: English,
Armenian, Russian, Chinese, etc., the language of
mathematics, and any programming languages can be used.

Figure 1. R-scheme (one arc to the right or to the left).

Any number of alternative arcs directed to the right and/or to
the left may be drawn for a node in an R-scheme, as shown
by Figures 2-7. These arcs are counted (and checked for a
true condition) from top to bottom until the condition is true.

mailto:ivelbit@gmail.com

Then the appropriate action is executed and transition is
performed along the corresponding directed arc into another
node of R-scheme - into a new state of a program. If the
condition is not on the arc, the actions are carried out under
the arc undoubtedly.

Such structuring of the information on the arcs provides
large visibility, supports compact programs, and eliminates
the use of traditional block of brackets type: begin end, { },
<? ?>, etc., refuse to write of the statements, one per line,
and a ladder. Figure 2 shows an example of defining a new
operator "3 (can be any number) Conditions and cycle".
Figure 2a shows its R-scheme, Figure 2b shows its R*
mathematical model without the implementation details, and
Figure 2c - an equivalent recording in C++, where the red
marked redundant characters are compared with the R-
scheme in Fig. 2a.

a)

b)

Recording of
statement
“Selection and
cycle” in С++
{
 _l2:
 if(Condition1){
 Actions
 }else{

if(Condition2){
 Actions
 }else{

if(Condition3){
 Actions
 }
 }
 }
 if(Condition4){
 Actions
 }else{
 goto _l1e;
 }
 if(Condition5){
 Actions
 goto _l2;
 }
 _l1e:;
}

с)

Figure 2. Recording of statement “Selection and cycle” in
 RR*-schemes and in C++. Highlighted in red in C++

 are the symbols superfluous for an R-scheme.

There are 79 extra characters or 133 (about 62.6%) with
indentation (with paragraph) and line feed. Recording of
operator Figure 2a is 2.5 times more compact, and recoding
of operator on Figure 2b - 8.6 times more compact than the
recording in C ++ on Figure 2c. For entering the traditional
operators (without the header above) on Figure 2c requires
225 keystrokes of keyboard whereas entering of the
equivalent operator (without a title about the ellipse) on
Figure 2a takes a total of 19 keystrokes keyboard, 11.8 times
less.

Keywords such as real, procedure, function, form, and so
on, can be used above an arc which are always true and set a
new understanding and use of all elements of R-schemes.
For example, Figure 3 presents parallel execution of all arcs

coming from the top left node in accordance with the key
word on the arc. The semantics of such task visually
displayed in standard notation to Figure 3c. Many of the
descriptions of variables and appropriate keywords can be
excluded from the GP, because they can be easily calculated
based on the structure of the recording of these variables on
R-scheme arcs, as in classical mathematics.

a)

b)

Recording of
understanding of data,
procedure and function
description in R-charts:
 real a, b, c;
 boolean d, e;

c)

Figure 3. Definition of data, procedures and function.

The nodes of R-schemes have no name, but may have
different configurations and color for the implementation of
traffic lights in the program, the definition of &-arcs, 3D-
programming, documenting the motivation of decisions, etc.
For example, a red colored node always defines the
beginning of the project, triangular of node - macro
R-schemes, on Figure 3b-5 rectangle is used to record arcs
that are executed in parallel, Figure 4 shows the principle of
organization of 3D-programming and documenting the
motivation of the decisions with the help of the node of
graph in the form of a parallelogram.

Figure 4. Organization of 3D-programming and
 documenting the motivation solutions.

Such a graph has a name that is written on top near the
yellow ellipse in Figures 1-3,5,7,8. The name can be with or
without parameters, Figure 5. A program is defined by any
number of interrelated on behalf of such graphs, Figure 5.
Unlike traditional recording programs such graph R (Figure
5) has a record of R * (Figure 6) mathematical

Figure 5. R-scheme of an OOP program is 7 times more
 compact than a typical program in Delphi [9]

abstraction program without records on the arcs (without
implementation details). This recording (R *) allows you to
define model programs and execute upon them the
mathematical studies, identical transformation, optimization
of various parameters - time, memory, classification for a
new type of graphics software archives, etc. It is an order of
magnitude and more compact circuits for the image of the
algorithm (program), and significantly simplifies the design
of programs. For example, in Figure 5 R=7 compactness, a
compactness of Figure 6 R*=35,7 times more compared with
the recording of this program conventional manner [9]. See
also Figure 2b, 2a-2c, and 7c-7b-7a. Fixed for today compact
real graphic shells (RR *) R=19 programs, R*= 130.

 Figure 6. R*-scheme of a program with no
implementation details is 35.7 times more compact then in
Delphi.

Figure 7 shows a comparison (advantage) of R-schemes with
widespread flowcharts - graphs loaded in the nodes (Fig. 7a).
As a result, Figure 7bc - this compact executable (!)
Program, and Figure 7a - not.

a)

b)

c)

Figure 7. Example of algorithm for factorial of N

recorded
 in block diagrams (a) and RR*-schemes (b, c).

R-scheme the first one (three in one) allows you to 1)
formally write logic of customer requirements and
specification for development of a software project in a
natural language; 2) write the algorithm, the draft program,

the computer code and documentation of the program in any
programming language, and 3) record the network schedule
of project development, Figure 8. In programming into
graphs final software product coincides with the
documentation (Figure 5) and the network schedule for its
development (the first graph of Figure 5). The supervisor the
first time may record the artist name and estimated time on
the arc of R-scheme in special brackets.

Figure 8. Recording of a network schedule in R-schemes

implementation of job and monitor the quality of work. That
did not has in any industry.

Each arc of a graph is entered by a one-touch of a mouse or
keyboard, or a finger on a touch screen, so that real programs
are entered 1.5-3 times faster. For example, to draw the R-
scheme in Figure 2a it will require a 4-touch of a mouse left
button or keyboard, on Figure 3a – 3-touch, on Figure 6 – 1
+ 2 + 6 + 5 + 2 + 3 + 4 + 3 = 26-touch, on Fig.7c – 2-touch,
which is 1.6 times less than the number specified elements
(ellipses and arcs) of this R-scheme program. The result is
that to set the arc of graph requires less than one-touch
keyboard or mouse. Setting texts on arcs is no different from
setting texts in the traditional text editor.

Thus, the proposed single graphical environment for
programming languages is formed of a single arc. Writing
programs in this shell is easier, it does not use traditional
operators, keywords, block of brackets and many
punctuation marks. It reduces the need for the program
narrative, simplifies translation and interpretation of
programs. For the first time the program is the subject of
mathematics and for the person, not only for computer. The
development more corresponds to mathematical derivation
of programs from well-defined concepts and rules without
contradictions and problems of ambiguous understanding.
RR*-schemes are ideal for reverse translation of programs in
any language of programming into graphic form. As a result,
the program from the "thing in itself", understandable only to
the author (not always available), becomes transparent for
the development and improvement, Graphic of record is 100
or more times compact, uses less memory to enter into the
computer by 1.5-3 times faster (needs fewer keystrokes on
the keyboard). The graphic recording is a polyglot (does not
depend on the language). For the first time, you can record a
program into graphs without implementation details (without
records on arcs) for their mathematical analysis and
synthesis in order to prove their correctness, optimize
memory, speed, etc.

3. GENERATOR OF PROGRAMS IN
 GRAPHS
Generator of programs - a software, is designed for active
programming by generating various embodiments and
prompts for a person with the purpose of construction as a
result of the graphics program in the form of R-schemes. The
initiative is always from the generator. It immediately offers

a person (not knowing anything about his intentions) R-
scheme, its future program in the form of Figure 1. The role
of the human in the first place is to enter all information
available to him about the task at hand and adequate
response on the message of generator. If his task has been
recorded at some formal programming language (COBOL,
C, etc.), the generator will issue a decision in R-schemes
automatically in a fraction of a second. Otherwise, the
generator starts with a man dialogue in accordance with laid
down in its program of generator. This program is
constantly being improved (collects intelligence of
interaction with a human) and specializes in the
corresponding contingent of professionals. The generator is
recorded in the R-schemes. Principles of programming in R-
scheme allow to automate the process of self-improvement
of the generator.

The essence of the work of the generator and the person is 1)
in the logical analysis of all the information about the
problem, 2) the selection of logic and actions, which in this
case must be made, and 3) write formulation of the problem
in graphic form into R-schemes. Technology to address these
issues is extremely simple: «step by step from logic» or
stepwise refinement of the logic of the problem, of the
process, of algorithm, program, project, human thoughts, etc.
In the future, language formulation of the problem is
transformed into a natural human language (usually in the
language of mathematics) and then - in the language of the
computer. From it all ambiguity understanding is
consistently removed. The generator ensures and directs the
person in such a way that the human language would become
clear for language of computer. Language of computer is
constantly being improved and approaches the professional
language for the staff of the development of programs.

It is important that the language of this description (R-
scheme) is only one (!) for the computer, for the customer,
and for all the performers of the project throughout its life
cycle. R-scheme is alone, but it is most convenient to the
executor corresponding to the project due to the
specialization of records on the arcs which are performed for
a specific task. R-scheme - the foundation of any project, and
the first thing that is approved and fixed in the project.
Further implementation details are refined and can be written
in any language and an alphabet on the arc.

4. REALIZATION
Currently, a graphical software development environment
is implemented as a pilot project (lab version of
programmers: A.Hodakovsky and A.Gubov) which includes
R-schemes editor – REditor for any texts on their arcs in any
language, creation and storage of the project structure, a
transformer of R-schemes to R* compact representation and
back, a compiler of RR* into C++, etc. This graphical
environment is implemented as REditor plug-in for Qt
Creator. It is composed of five domains, which divide a
computer screen into 5 areas. The main area (about 90% of
screen space) that occupies the central part of the screen is
Working Pane (WP) which is used for R-schemes creation
and editing. Top three lines present Main Menu for creating
an architecture and structure of the project environment
(Trees, File, and Preferences). Third area is Toolbox (14
graphical icons). Fourth pane is the list of the open Working
Panes of R-schemes for entire project. One WP is selected as
active (visible). The last area occupies a narrow left (5%)
strip of the monitor screen for storing tree-structure of
R-schemes for all WPs for development project. It provides
an operational (fast) view of WP for any part of the project.
Thus, implemented graphical environment has generalized

the existing experience of programming in graphs. It allows
development of any projects and is complete enough (we
estimate at 80%) for a commercial version of graphical
programming environment to build on its basis.

5. CONCLUSION
Thus, this article suggests a new mathematical culture of
programming which is interesting by its advantages,
simplicity, humanity and the natural transition to it for all
and not just for programmers. This culture allows you to
bring the style proof into a professional programming, and
mathematical methods of analysis and synthesis. New
proposals are particularly effective for the primary education
of programming, so they can be included in the system of
compulsory education of professionals of all specialties.
Programming should be part of universal literacy, and
culture of the society. These proposals begin programming
in the new twenty-first century and it is a great promise in
the future to build human-computer society and its co-
evolution with man. One of the users of R-schemes has said
this on a very emotional note: "After two weeks of drawing
R-schemes in the editor, I solved the problem, which R-
schemes would never solve... I see R-schemes as a useful
and beautiful tool not only in programming, but anywhere
you need to understand the logic of interaction of parts of
any problems or issues. Compared with the flow-chart and
UML diagrams, they have considerable advantages. They are
performed on a computer throughout entire life cycle of any
work, more visually, more compact and are not cluttered
with unnecessary details (figures) and suitable for nonlinear
imaging algorithms or data structures (e.g. C ++ classes).
Therefore, I do not understand why this tool does not enjoy
crazy (wide) popularity" (V.Bushkevich, 04.05.2015).

It is known that in the human brain the connections between
neurons and brain regions play a major role, as in the R-
schemes - an arc between the nodes are not limited to the
number, direction and 3D-dimension relations between the
nodes of one and several R-schemes. Nothing is like this in
modern programming, and on the parameters (more discrete
and more clearer) they are better than connections in the
human brain. Memory makes all this and the huge potential
of modern microelectronics and devices today to reflect on
the development strategy of our computers and to analyze
the main shortcoming of them from 1947 - a complex and
primitive organization of the programming process. Now it
is the time for analysis and selection of the best
COMPUTER and SOFTWARE of radically new of brain-
like generation for the new millennium. We estimate the
complexity of creating such a project in ½ years and plus ½
years for marketing and sales. These periods may be
significantly less taking into account the implementation of
the existing version of R-schemes, international experience
in programming and phased implementation.

REFERENCES
[1] E.Dijkstra, «Letters to the editor: go to statement

considered harmful», Communications of the ACM 11
(3): pp. 147–148. doi:10.1145/362929.362947.ISSN0001-
0782, 1968.

[2] "SergeevVG – The chief designer of control systems of
rocket and space complexes.To100-anniversary of the
birth", Space-Inform, Kharkiv, 448 pp., 2014.

[3] V.M,Glushkov, I.V.Velbitskiy, «Programming
technology and problems of its automation», USIM,
№6, pp. 75-93, 1976.

[4] I.V.Velbitskiy, Programming technology. Техника;
Ukraina, 279 pp., 1984.

[5] «Information technology, Programme constructs and
convention for their Representation», International
standard ISO/IEC 8631, Geneva 20, Second edition,
1989.

[6] W.K.McHenry, «Technology: A soviet visual
programming». J. of Visual Languages and Computing,
v.1, №2, pp.199-212, 1990.

[7] I.V.Velbitskiy, «Graphical Programming and Program
Correctness Proof», CS and IT Proceedings of 9th

International Conference, Erevan, IEEE Conf. DOI:
10.109/ CSITtchnol, 6710368 pp.1-8. 2013.

[8] I.V.Velbitskiy, «Graphical programming of new
generation. Single universal graphical shell for all
programming languages». Global IT 2015, Las Vegas,
USA, p.1-8, 2015

[9] A.N.Valvachev «Programming in Delphi. Chapter 3.6»
http://www.rsdn.ru/article/Delphi/Delph

http://www.rsdn.ru/article/Delphi/Delph

