
Augmenting JavaScript JIT with Ahead-of-Time

Compilation

ABSTRACT
Modern JavaScript engines use just-in-time (JIT)

compilation to produce a binary code. JIT compilers are

limited in a complexity of optimizations they can perform at

runtime without delaying an execution. On the contrary,

ahead-of-time (AOT) compilers do not have such limitations,

but they are not well suited for compiling dynamic languages

such as JavaScript. In this paper we discuss methods for

augmenting multi-tiered JavaScript JIT with a capability for

AOT compilation, so to reduce program startup time and to

move complex optimizations to AOT phase. We have

implemented saving of JavaScript programs as a binary

package containing bytecode and native code in open-source

WebKit library. Our implementation allows shipping of

JavaScript programs not only as a source code, but also as

application binary packages with a precompiled code. In

addition, our approach does not require any language feature

restrictions. This has resulted in performance gain for

popular JavaScript benchmarks such as SunSpider and

Kraken on ARM platform, however, at a cost of increased

package size.

Keywords
JavaScript, JIT, Ahead-of-Time Compilation,

JavaScriptCore, WebKit

1. INTRODUCTION
Dynamic properties of JavaScript language, such as the

presence of dynamic types and prototypes that can change

during the execution, make it almost impossible to compile

the code effectively with static ahead-of-time compilers

without restricting the language features. So most of the

modern JavaScript execution engines use just-in-time (JIT)

compilation techniques. However, JIT compilers are limited

in performing complex optimizations, and take some time to

compile a program before it can execute. To implement a

tradeoff between quick startup and doing sophisticated

optimizations, JavaScript engines usually use multiple tiers:

lower tier JITs generate less efficient code, but can start

almost immediately (e.g., even with interpretation), while

higher tier JITs aim at generating very effective code for hot

places, but at the cost of long compilation time. So even

highly optimized JavaScript execution engines require some

time to "warm-up" before reaching their peak performance.

JavaScript is cross-platform, but unlike Java or .Net

environments, it does not have standard bytecode or other

forms for binary distribution. Currently, the standard way for

distributing JavaScript programs is the source code, often

compacted with tools like Google Closure Compiler [1].

On the other hand, as now HTML5 and JavaScript are not

only used for Web scripting, but also gain popularity as an

application development platform for mobile and media

devices (e.g., Tizen [2] and Firefox OS [3]), the performance

and response time become even more important.

In the paper we discuss a developed framework for ahead-of-

time compilation (AOTC) of JavaScript programs built upon

open source engine JavaScriptCore [4] (JSC), which is the

part of WebKit library. We have developed a binary format

for saving JavaScript programs, which stores them in a form

of bytecode, and optionally can contain a native code. We

show the performance results for our implementation, as

well as binary package size growth compared to plain and

compacted JavaScript code. In addition, we discuss the

problems that we had to solve to implement AOTC in JSC.

2. RELATED WORK
There are a number of works dedicated to ahead-of-time

compilation of dynamic languages, which use two major

approaches. The first one is to restrict a language to its

subset, which can be compiled statically. Examples of such

projects are static RPython to C compiler [5], ahead-of-time

JavaScript compiler EchoJS [6], and Mozilla's asm.js [7].

Another approach is to save JIT-generated code and reuse it

on the next execution, if possible. This approach is used for

statically-typed languages like asm.js or Java [8], but also it

was tried [9] with JavaScript.

Jeon and Choi [9] describe a method for reusing JIT-

compiled code in JavaScriptCore (JSC) engine. The authors

are saving and later reusing binary code generated by

Baseline JIT [4]. The reported decrease in compile time

when reusing the code is 44%. However, the problem of

code relocation is not discussed in detail. Our current

approach is based not only on saving generated machine

code but also on saving Baseline JIT compiler intermediate

representation (bytecode) without restricting the language

features. In current version of JSC engine, it is also

important to reuse the compiled code (or intermediate

representation) at different JIT levels.

3. WebKit's JavaScriptCore Multi-Tier

JIT Architecture
A multi-tiered JIT structure of JavaScriptCore is shown in

Fig. 1. JSC first parses source code into abstract syntax tree

(AST). After that, it builds internal representation called

bytecode. Bytecode instructions are non-typed and this

internal representation semantically is mostly equivalent to

JavaScript. Bytecode instruction stream is stored in an array,

and instructions have variable length. In modern versions of

JavaScriptCore instead of classic interpreter by default

LLINT (low level interpreter) is used. It is implemented in a

special cross-platform assembly language called offlineasm.

While building JavaScriptCore, offlineasm can be compiled

into native code or can be converted into C source.

Roman, Zhuykov
ISPRAS

Moscow, Russia

e-mail:

zhroma@ispras.ru

Vahagn, Vardanyan
ISPRAS

Yerevan, Armenia

e-mail:

vaag@ispras.ru

Dmitry, Melnik
ISPRAS

Moscow, Russia

e-mail:

 dm@ispras.ru

Ruben, Buchatskiy
ISPRAS

Moscow, Russia

e-mail:

ruben@ispras.ru

Eugeniy Sharygin
ISPRAS

Moscow, Russia
e-mail:

eush@ispras.ru

mailto:eush@ispras.ru

LLINT is intended to have zero start-up cost (not counting

the time required to build bytecode). At the same time it

follows the same calling, stack, and register conventions

used by JSC's just-in-time compilers. LLINT includes

optimizations such as inline caching[10] to ensure fast

property access. It also collects lightweight profiling

information about types and last values of the objects.

Baseline JIT optimization starts only for hot paths. The first

level of JIT-optimization kicks in for functions that gain at

least 100 execution points. For each invocation, the function

gains 15 points, and each loop iteration adds one point. Augment ing JavaScript JIT with Ahead-of-T ime Compilat ion 3

4: Fourth Tier LLVM JIT

JS Source

2: Baseline JIT

AST

DFG Nodes
3: DFG Speculative

JIT

Native Code
(Baseline)

OSREntry

Internal
Representation:

1: LLINT Interpreter
Bytecode

LLVM
bitcode

Native Code
(DFG)

Native Code
(LLVM)

OSREntry

ty
p

e
s
,

p
ro

file
 in

fo

O
S
R
E
x
it

F ig. 1. JavaScriptCore Mult i-T ier JIT Architecture

The parser carries out the syntact ic analysis, it consumes the tokens from the

lexer and builds the corresponding syntax tree.

After that it builds internal representat ion called bytecode. Bytecode inst ruc-

t ions arenon-typed and this internal representat ion semant ically is most ly equiv-

alent to JavaScript . Bytecode instruct ion stream is stored in an array, and in-

st ruct ions have variable length. The first cell for each inst ruct ion stores the in-

st ruct ion type, and several next cells contain operand and result addresses. They

may link to constant address or may contain a number of a local pseudo-register .

To access object propert ies the property address loading is a separate bytecode

instruct ion and a constant st ring with property name is one of its operands.

Some property access inst ruct ions have a special cell to store inline caching in-

format ion, which can be used to opt imize property access. Many inst ruct ions

use the last bytecode cell to store type profiling informat ion.

In early version of JavaScriptCore bytecode was only used for interpretat ion.

The classic interpreter sequent ially reads bytecode inst ruct ions and executes

them. Branches and loops are organized using condit ional and uncondit ional

jump inst ruct ions, which cause the interpreter to cont inue execut ion from spec-

ified offset in bytecode. In modern versions of JavaScriptCore instead of classic

interpreter by default LLINT (low level interpreter) is used. It ’s implemented

in a special cross-plat form assembly language called offl ineasm. While building

JavaScriptCore, offlineasm can be compiled into nat ive code or can be converted

into C source.

LLInt is intended to have zero start -up cost (not count ing t ime required to

build bytecode). At the same t ime it follows the same calling, stack, and register

convent ions used by JSC’s just -in-t ime compilers. For example, calling a LLInt

Figure 1. JavaScriptCore Multi-Tier JIT Architecture

These numbers are approximate; the actual heuristic depends

on function bytecode size and current memory pressure.

Baseline JIT emits appropriate native code for each bytecode

instruction. This native code implements all possible cases

for each operation. For example, addition for numbers would

execute mathematical addition, but for strings it means

concatenation. Generated native code contains many

different branches to consider all possible cases. When

native code is ready, it certainly will be used for new

function invocations. Moreover, the LLINT will on-stack-

replace (OSR) to JIT even if it is stuck in a loop; as well as

all callers of the function are relinked to point to the

compiled code as opposed to the LLINT prologue. OSR

means that after some loop iteration LLINT will jump right

to an appropriate place in JIT-generated native code instead

of interpreting the next instruction. Baseline JIT also acts as

a fallback for functions that are compiled by next-tier

optimizing JITs: if the optimized code encounters a case it

cannot handle (for example, when type of value of the

variable does not correspond to profile information), it bails

to Baseline JIT. Such transition is called on-stack-

replacement exit (OSR exit).

The next optimization level called DFG JIT (Data Flow

Graph JIT, also referred as Speculative JIT), which performs

speculative optimizations using collected profile

information. The information collected includes variables

type information, recent values loaded into arguments,

loaded from the heap, or loaded from a call return. DFG JIT

optimization starts only for those functions, which gain 1000

execution points, again, these numbers are approximate and

are subject to additional heuristics. Speculative JIT performs

aggressive type speculation based on profiling information

collected by the lower tiers. All optimizations are performed

on SSA internal representation called data flow graph

(DFG), and instructions are nodes of the graph. DFG is built

from function bytecode using profile information, and after

all optimization passes native code is created for each DFG

node. As described earlier, DFG uses deoptimization (OSR

exit) to handle cases where speculation fails. Altogether, the

Baseline JIT and the DFG JIT share a two-way OSR

relationship: Baseline JIT may OSR into the DFG when a

function gets hot, and the DFG may OSR to the Baseline JIT

in the case of deoptimizations. Repeated OSR exits from the

DFG serve as an additional profiling hint: the DFG OSR exit

machinery records the reason of the exit (including

potentially the values that failed speculation) as well as the

frequency with which it occurred; if an exit is taken often

enough, then reoptimization kicks in: callers are relinked to

the Baseline JIT for the affected function, more profiling is

gathered, and then DFG may be later reinvoked.

Reoptimization heuristics uses exponential back-off to

prevent situation when some pathological code causes

permanent reoptimization and spends a lot of time in OSR

transitions.

The fourth optimization level is called FTL JIT (Fourth Tier

LLVM JIT), and is used only for functions that gain more

than 10000 execution points. It performs wider set of

optimizations and uses LLVM bitcode as intermediate

representation. Instead of generating machine code directly

from the DFG, its representation is lowered to LLVM

bitcode and then LLVM optimization pipeline and backend

are invoked to generate machine code.

Figure 2. Speed of JavaScriptCore execution tiers for v8-

richards and BrowserMark benchmarks

Fig. 2 shows performance comparison of different JSC tiers.

Note that we didn't run Browsermark benchmarks with

classic interpreter, as well as didn't convert them to

equivalent C versions. The data for v8-richards was

measured in [11]. Overall, the peak JavaScriptCore

performance for computational-intensive programs with C-

like semantics can be roughly estimated as a half of that for

C code compiled with a traditional optimizing compiler like

GCC.

4. General approach for AOT compilation

in JavaScriptCore
In order to understand possible improvements from ahead of

time compilation, we started with collecting information

about how much time each JavaScriptCore execution stage

takes. We have improved sampling-based profiling in

JavaScriptCore and ran it on SunSpider and v8-v6 JavaScript

benchmarks. JSC tiers execution time breakdown is shown

in Fig. 3. Ahead of time compilation can improve the

performance in several ways. First, we can save time on

some operations, like building AST, creating bytecode and

generating native code. But loaded bytecode and native code

need to be linked in new runtime environment, and such

linking may be also time consuming. Second way to

improve performance is to speed up the code by shifting its

execution to the next tier. For example, if we provide DFG

JIT with pre-collected profile info, the code which currently

executes with LLInt and Baseline JIT can potentially start its

execution right on DFG. The possible speedup can be

estimated from data in Fig. 2. Third, offline optimizations

can be much more complex than JIT can afford, so the AOT-

compiled code can be optimized better.

So the general idea of adding ahead-of-time compilation in

JavaScriptCore is that by pre-saving optimized IR, native

code, profile information or other data, normally built only

during the program execution, we may start execution at

higher-level JIT, or start right with pre-optimized code.

A framework for optimization may involve profile-based

optimizations, or be fully static. In addition, the

optimizations may be implemented similar to caching at

client-side, or performed at the server side. The latter option

assumes development of a binary package format for

application distribution. One of the benefits of AOT-

compiled code that ships as a binary package, is that it

provides basic source code protection, making reverse

engineering and unauthorized copying of the code much less

straightforward.

6 R. Zhuykov, D. Melnik, V. Vardanyan, R. Buchatskiy et al.

stack level when on some nested recursion level deopt imizat ion happens and new

reopt imized code was created. All types of execut ion provide the same execut ion

semant ics, and the only effect of switching between them is the performance of

the JavaScriptCore.

Fig. 2 shows performance comparison of different JSC t iers. Note that we

didn’t run Browsermark benchmarks with classic interpreter, as well as didn’t

convert them to equivalent C versions. The data for v8- r i char ds was measured

in [8]. Overall, the peak JavaScriptCore performance for computat ional-intensive

programs with C-like semant ics can be roughly est imated as a half of that for C

code compiled with a t radit ional opt imizing compiler like GCC.

3 General approach for A OT compilat ion in

JavaScr ipt Core

In order to understand possible improvements from ahead of t imecompilat ion we

started with collect ing informat ion about how much t ime each JavaScriptCore

execut ion stage takes. We have improved sampling-based profiling in JavaScript -

Core and ran with it SunSpider and v8-v6 JavaScript benchmarks. JSC t iers

execut ion t ime breakdown is shown in Fig. 3.

SFX Overhead Analysis

1

Build AST
AST to Bytecode

DFG Optimizations
Bytecode to native

DFG Reoptimizations

DFG IR to native

LLINT interpreter

Baseline JIT execution

Baseline JIT execution

(after deoptimization)

DFG JIT execution Missed samples

Garbage collection

Parsing and bytecode

generation (2.9%)

JIT optimizations and code

generation (8.3%)

Interpretation (20%)

Native code execution (60%)

Garbage

collection

(7%)

S
u

n
S

p
id

e
r

v
8

-v
6

F ig. 3. JavaScriptCore execut ion t ime breakdown (the percentages shown are average

among two benchmarks)

Ahead of t ime compilat ion can improve the performance in several ways.

First , we can save t ime on some operat ions, like building AST, creat ing bytecode

and generat ing nat ive code. But loaded bytecode and nat ive code need linking in

Figure 3. JavaScriptCore execution time breakdown (the

percentages shown are average among two benchmarks)

In JSC, any AOTC implementation in any case along with its

data should be saving JavaScript source or bytecode, because

it's the only level of execution that supports all JavaScript

features, so in case of deoptimization at higher level JITs it

should be able to continue execution with bytecode.

In our work, we have built AOTC framework, which

involves server-side component to compile JavaScript

applications into binary package, and a client-side

component that can load those packages. Currently, the

package may consist of bytecode, and optionally contain

Baseline JIT's native code.

5. Saving JavaScriptCore Bytecode
The first part of our AOTC framework is dedicated to saving

JavaScript source code in bytecode form and loading it

before execution. In normal JavaScriptCore workflow,

bytecode is generated for each function only at the moment

of its invocation. We developed another workflow to allow

saving bytecode without running the script. We save

bytecode data into a file together with some additional

information, such as constant tables, switch tables, and all

the necessary data for exception handling and regular

expressions. To save bytecode without running the script we

have to emulate work of namespaces stack. JavaScriptCore

bytecode was not designed as an internal representation to be

written into a file, its main purpose is effective interpretation

and fast generation of native code on Baseline JIT level.

Unlike JavaScript source, bytecode reflects the semantics of

the program only in particular context. For example, it may

depend on object properties, which are already created at the

moment of function invocation. The differences are mainly

in some operation flags, which allow optimizing the property

access. However, sometimes bytecode saved in another

context may produce a wrong result. Furthermore, global

objects contain absolute addresses in bytecode and it was

necessary to relink these addresses to correct ones while

loading bytecode. All these details are taken into account

when developing our framework for ahead-of-time bytecode

saving. First, we have tried to store all the bytecode data in a

SQLite database, but the performance overhead for using

SQLite was too big while loading bytecode for some tests.

Now we just store bytecode and all additional data as a byte

array inside a file. In the beginning of the file, we insert an

offset map, which allows fast access to function information.

When modified JavaScriptCore version reads a bytecode file,

it loads an offset map and global bytecode (bytecode that

corresponds to JavaScript source not inside any function).

After the execution starts, and if a function saved in

bytecode is invoked, its bytecode is lazily loaded from a file

using the given offset from the map.

JavaScriptCore has an interesting feature that for each

function in the source code there could be two distinct

bytecode versions: one for a regular function call, and

another when a function is called as a constructor using a

new keyword. In our implementation, we save only the

normal bytecode version and transform it to a constructor

form when it is necessary.

We compile bytecode from JavaScript source statically

without actually running the script. Still, we provide full

support for ECMA-262 standard, including eval(). When a

call to eval() is encountered, its argument string follows

regular execution path for JavaScript source code, which

involves building AST and bytecode at a run time. The only

exception is a method which explicitly needs a JavaScript

source code. One example of such functions is toString()

method applied to a function. Another example is using the

line property of an exception object (it should contain the

line number where the exception was thrown).

5.1. Performance and Binary Packages

Size
We have tested our AOTC version of JavaScriptCore (with

saving bytecode only, without saving native code) on

popular JavaScript benchmarks. It has shown 3.3% speedup

on SunSpider, 1% on v8-v6 and 16% on Kraken

benchmarks. Great speedup on Kraken is explained by its

2MB data files, which contain JavaScript arrays initialized

with floating-point numbers. With AOTC, the parsing of

those numbers is eliminated, as they can reside within our

package in binary form.

Resulting binary sizes are 1.2-4.4 times larger than original

JavaScript sources (on average x1.3 size growth for

SunSpider, x4.4 for v8-v6 and x1.3 for Kraken). The sources

were compacted with Google Closure Compiler, and both

sources and binaries were compressed by gzip. For original

non-compacted sources and both uncompressed sources and

binaries the growth rates were x1.2 for SunSpider, x2.3 for

v8-v6 and x2 for Kraken.

6. Saving Baseline JIT Native Code
As the next step, we have extended our original AOTC

approach for saving bytecode in JavaScriptCore to save the

native code produced by Baseline JIT. The main problem

with loading previously saved native code is the addresses

relocation. Namely, the absolute addresses of objects saved

in native code (e.g. GlobalObject, identifiers, core internal

functions addresses) should be replaced upon loading the

code with addresses those objects have during current

execution.

At the saving time, we use our original AOTC driver to visit

each CodeBlock and then we run Baseline JIT in order to

generate the native code.

During code generation phase, we identify objects that will

need relocation, and capture their offsets and a link to

original objects, and save them in relocation tables.

We save the resulting native code to the same binary file as

we saved bytecode, along with relocation tables and some

additional information required to patch the addresses

properly. We don't save original absolute addresses in the

native code at to-be-patched offsets, but pad them with

zeroes for better compression.

The objects that need relocation in native code include:

 Callee addresses. There are calls to

JavaScriptCore engine internal functions, as well

as to the generated code (trampolines and stubs to

call the translated user functions and runtime

functions);

 Addresses of global variables, constants and

identifiers (for referencing object properties),

GlobalObject address;

 Pointers to memory allocator’s structures, both

generic (remaining capacity, current payload, free-

list head) and object-specific (e.g. for JSArray) are

also emitted by JIT as absolute values;

 Address of execution counters for a CodeBlock

(used to decide whether the code is hot enough to

switch to DFG JIT), and other JavaScriptCore

internal data structures.

All references to these objects are saved as indices in

corresponding object tables.

The resulting binary package consists of the following

sections:

 Bytecode and other related original AOTC data;

 Native code – the code generated by Baseline

JIT;

 Additional data for linking – native code offsets,

function indices and other data sufficient to patch

absolute addresses with valid values at the loading

time;

 Extra CodeBlock data – the data generated after

bytecode generation at Baseline JIT along with the

native code. It is necessary to preserve this data if

Baseline JIT generation step is skipped at runtime.

6.1. Code Size Growth
The code size of binary packages produced when saving

native code along with bytecode is on average 2.5-5 times

larger than those containing just bytecode (measured on

SunSpider and Octane benchmarks on x86_64).

Fig. 4 shows binary package structure for 10 SunSpider tests.

Significant part of saved native code has to be repatched

(10-23%, 14% on average) with new absolute addresses

upon loading.

6.2 Performance
The performance impact of loading precompiled native code

turned out to be negligible: it didn't show any significant

performance change on SunSpider and v8 tests. This can be

explained by the following reason. Sampling data for

original JavaScriptCore shows that the code generation part

in Baseline JIT takes just 0.1% of total JavaScriptCore run

time for both SunSpider and V8-V6 tests (see Bytecode to

native thin bar in Fig. 3). Though this data was collected

with LLINT enabled, and cold functions weren't compiled

with Baseline JIT at all, the code generation part of lower-

tier JIT appears to be quite straightforward even compared to

parsing source to AST (1-2.5%) and bytecode generation

(0.7-1%). Considering the time necessary to load native code

and to link it properly using the address relocation tables, we

cannot load the code much faster than the original JSC

backend can directly generate it from bytecode. In addition,

large binary size (on average, 5-10 times larger than the

original JavaScript source) contributes to slow processing

too.

The performance issues with saving native code need further

investigation, but the reason described above makes it

unlikely for Baseline JIT native code saving to result in a

speedup. Still, it could be possible to use the native code

without corresponding bytecode for selected program

functions that require source code protection better than that

provided by bytecode.

10 R. Zhuykov, D. Melnik, V. Vardanyan, R. Buchatskiy et al.

F ig. 4. Binary package (bytecode + nat ive code) st ructure

5.2 Per for mance

The performance impact of loading precompiled code turned out to be negligible:

it didn’t show any significant performance change on SunSpider and v8 tests.

This can be explained by two reasons.

First , sampling data for original JavaScriptCore shows that the code gen-

erat ion part in Baseline JIT takes just 0.1% of total JavaScriptCore run t ime

for both SunSpider and V8-V6 tests (see Bytecode to native thin bar in Fig. 3).

Though this data was collected with LLINT enabled, and cold funct ions weren’t

compiled with Baseline JIT at all, the code generat ion part of lower-t ier JIT

appears to be quite straight forward even compared to parsing source to AST (1-

2.5%) and bytecode generat ion (0.7-1%). Considering the t ime necessary to load

nat ive code and to link it properly using address relocat ion tables, we can’t load

the code much faster than original JSC backend can direct ly generate it from

bytecode. Also, large binary size (on average, 5-10 t imes larger than original

JavaScript source) contributes to slow processing too.

Second, the init ial expectat ion for start ing with 2.5-6.9 t imes faster code (as

Fig. 2 suggests) for those 20% execut ion t imespent in LLINT interpreter (Fig. 3)

may be not quite accurate. For example, the one thing that Baseline JIT makes

advantage of is an inline cache for accessing object propert ies. However, for cold

code that runs on LLINT, inline cache may not yet has filled up, so Baseline

JIT can’t make advantage of it . And we can’t direct ly save inline cache because

it contains references to objects created at program execut ion t ime, and not at

JIT run t ime like other objects we save.

Figure 4. Binary package (bytecode + native code)

structure

7. Conclusion
We have developed a framework for ahead-of-time

compilation of JavaScript programs. It was implemented in

JavaScriptCore (JSC) open source JavaScript engine (a part

of WebKit library). The framework consists of two

components: command-line compiler, which compiles

source JavaScript program into compressed binary package,

consisting of bytecode (JSC IR) and optionally native code

(produced by JSC's Baseline JIT). The second component is

the patched JSC engine with a capability for loading and

executing binary packages produced by the compiler.

The ahead-of-time compilation framework fully supports

ECMA-262 standard. In addition, it provides 1%, 3% and

16% speedups for SunSpider, v8-v6 and Kraken benchmarks

respectively when executing with precompiled bytecode.

However, the binary sizes are 1.2-4.4 times larger than

original JavaScript source. Generated native code saving,

resulted in further 2.5-5 times binary size increase, but

without any additional speedup due to the large part of the

JIT-generated code requires relinking.

We plan to continue work by researching the possibility to

save optimized intermediate representation of higher JSC

tiers, namely, DFG and FTL JITs. We'll be also investigating

options for saving type profile information and inline cache

data.

REFERENCES
[1] Google Closure Compiler open source project site.

 https://code.google.com/p/closure-compiler.

[2] Tizen platfrom website. http://tizen.org/

[3] Mozzila website. https://www.mozilla.org

[4] JavaScriptCore engine on WebKit open source

 project site.

 http://trac.webkit.org/wiki/JavaScriptCore

[5] RPython to C compiler.

 http://pypy.readthedocs.org/en/latest/translation.html

[6] Ahead-of-time JavaScript compiler EchoJS

 https://github.com/toshok/echo-js

[7] Asm.js website. http://asmjs.org

[8] SungHyun Hong, Jin-Chul Kim, Jin Woo Shin,

 Soo-Mook Moon, Hyeong-Seok Oh, Jaemok Lee

 and Hyung-Kyu Choi. “Java client

 ahead-of-time compiler for embedded systems.”

 SIGPLAN Not. 42, 2007, 63-72.

[9] S. Jeon, J. Choi. “Reuse of JIT compiled code based

 on binary code patching in JavaScript engine.” J.

 Web Eng. 11 2012, pp. 337-349, 2012

[10] Urs Hölzle, Craig Chambers, David Ungar “Optimizing

 Dynamically-Typed Object-Oriented Languages With

 Polymorphic Inline Caches” Proceedings of the European

 Conference on Object-Oriented Programming, 21-38,1991

[11] Filip Pizlo. Optimizing JavaScript (presentation).

 https://trac.webkit.org/wiki/JavaScriptCore

https://code.google.com/p/closure-compiler
http://tizen.org/
https://www.mozilla.org/
http://trac.webkit.org/wiki/JavaScriptCore
http://pypy.readthedocs.org/en/latest/translation.html
https://github.com/toshok/echo-js
http://asmjs.org/
http://dl.acm.org/author_page.cfm?id=81100400656&coll=DL&dl=ACM&trk=0&cfid=535454631&cftoken=85410481
https://trac.webkit.org/wiki/JavaScriptCore

