
Parallelization of Sorting Algorithms

Narek, Abroyan

National Polytechnic University of

Armenia

Yerevan, Armenia

e-mail: narek.abroyan@gmail.com

Robert, Hakobyan

National Polytechnic University of

Armenia

Yerevan, Armenia

e-mail: rob.hakobyan@gmail.com

ABSTRACT
In this work we supply several approaches of parallelization

of sorting algorithms. There are a lot of sorting algorithms

that differ from each other by their effectiveness, resource

usage etc. We show three different types of parallelization

for sorting algorithms - parallelization through algorithm

modification, multithreading, OpenMP. In this work as an

example we represent and develop parallel versions of

bubble sort and merge sort algorithms. Bubble sort is

considered as one of the most simple, but inefficient sorting

algorithms. There are many other more preferable sorting

algorithms that are widely used. This work shows that

parallelization of bubble sort makes it quite effective and can

be compared with other more effective and widely used

sequential sorting algorithms. Merge sort is considered to be

a more complex and effective algorithm, but we represent a

more effective version of it. We also do compare the

speedup for each parallel version and find out a more

efficient parallel algorithm. In this work we use C++

programming language (with the new C++11, C++14

standards) for developing our algorithms.

Keywords
Sorting algorithms, bubble sort, merge sort, multithreading,
OpenMP, speedup

1. INTRODUCTION

Many computer scientists consider sorting to be the most

fundamental problem in the study of algorithms. Many

engineering issues come to the fore when implementing

sorting algorithms. The fastest sorting program for a

particular situation may depend on many factors, such as the

memory hierarchy (caches and virtual memory) of the host

computer, and the software environment. Many of these

issues are best dealt with at the algorithmic level, rather than

by “tweaking” the code [1].

In computer science there are many sorting algorithms

such as bubble sort, insertion sort, merge sort, quick sort, etc.

They differ in their functionality, performance, resource

usage. In this work as an example we will focus on bubble

sort and merge sort algorithms. Bubble sort is considered as

the oldest sorting algorithm. It is popular, but inefficient

sorting algorithm. It works by repeatedly swapping adjacent

elements that are out of order [1]. Bubble sort has O(n2)

average complexity. The best case of bubble sort is O(n), it

is when the input list is already sorted. Merge sort is a divide

and conquer algorithm. It divides unsorted list into n list, that

each of them contains only one element. After that it

repeatedly merges subsists and form the final list. Merge sort

has O(n·log(n)) average complexity. It’s complexity for the

best case is also O(n·log(n)).

In this work our goal is to find parallelization methods
for sorting algorithms and demonstrate them on bubble sort

and merge sort algorithms which will make them work faster

than the original versions. At the end we will compare all the

developed parallel versions.

2. THE NEED OF PARALLELIZATION

From 1986 to 2002 the performance of microprocessors

increased, on average, 50% per year. Since 2002, however,

single-processor performance improvement has slowed to

about 20% per year. This difference is dramatic: at 50% per

year, performance will increase by almost a factor of 60 in

10 years, while at 20%, it will only increase by about a factor

of 6. By 2005, most of the major manufacturers of

microprocessors had decided rather than trying to continue to

develop ever-faster monolithic processors, manufacturers

started putting multiple complete processors on a single

integrated circuit. This change has a very important

consequence for software developers: simply adding more

processors will not magically improve the performance of

the vast majority of serial programs. Such programs are

unaware of the existence of multiple processors, and the

performance of such a program on a system with multiple

processors will be effectively the same as its performance on

a single processor of the multiprocessor system [2]. So

increasing a program’s performance there is a need to

parallelize that program, especially the algorithms that are

used in that program.

One of the most important criteria of a program’s

parallelization is the speedup. It shows how many times the

parallel program works faster than the sequential one, when

both programs are solving the same problem. If Ts is the

execution time of the sequential program for our problem

and TP is the execution time of the parallel program used to

solve the same problem, then the speedup formula is

P

S

T

T
S  (1)

If we run our program on p cores, then the best case would

be when

pTS  PT (2)

This is called a linear speedup. But According to Gene

Amdahl’s law even in ideal parallel programs it’s hard to get

such a result, because in every program there is some α

fraction that cannot be parallelized. The parallel execution

time and the speedup will be

pTTT SSP /)1( 

1)1(


p

p

T

T
S

P

S


(3)

And when p



1
lim 



S
p

(4)

This means that a program’s speedup cannot exceed the

number in (4). In this work we will compute the speedup by

(1) for bubble sort’s each parallel version and compare them.

3. PARALLELIZATION THROUGH

ALGORITHM MODIFICATION

In this version of parallelization we concentrate on algorithm

modification. This method is very individual for every

sorting algorithm. We will develop parallel versions of

bubble sort and merge sort independently.

3.1. Parallelization of bubble sort
In that case two instructions can be executed in parallel if

they satisfy Bernstein’s conditions. Let Pi and Pj be two

program segments. For Pi, let Ii be all of the input variables

and Oi the output variables, and likewise for Pj. Pi and Pj are

independent if they satisfy

 ij OI  ,

 ji OI  ,

 ji OO  , [3]

One of the parallelization ways of sorting algorithms can

be modification of the algorithm in a way of those operations

in loops and frequently executed instructions satisfy

Bernstein’s conditions. In this case parallelization can be

done through a pipeline mechanism. Every iteration can be

performed independently from the previous one.

In case of bubble sort algorithm, each iteration’s operations

depend on the previous iteration’s result, so there is a need to

make some change in order to make possible the

instructions’ parallel execution. For that purpose we can use

Odd-Even transposition method and divide our input list into

two imaginary lists – odds and evens. On one pass through

the list, we can compare an odd index and the right adjacent

even index element; in the succeeding phase, it compares an

even index and the right adjacent odd index element. The

odd and even phases are repeated until no exchanges of data

are required. This will allow instructions of each loop to be

independent. Schematically this is represented in Fig. 1.

Fig. 1 Using odd-even transposition method

By odd-even transposition method we can sort n elements

in n phases, each of which requires n/2 compare-exchange

operations. Although the complexity of this algorithm is still

O(n2), but there is already increase of performance. In future

chapters we will use this method and modify it again by

combining with multithreading.

Now when we have the first parallel version of bubble

sort we can experimentally measure the execution time of

sequential and parallel algorithms, compute speedup. For

getting more accurate results we will repeat the above

operations for many times with different input lists that will

be generated randomly. Speedup is approximately 2 (S = 1.8

– 2.3) independently from input list size.

First parallel version of bubble sort with using

odd-even transposition method does not require any

additional memory.

3.2. Parallelization of merge sort
Merge sort can be well parallelized due to use of divide and

conquer method. Merge sort’s original algorithm is

demonstrated in Fig. 2

Fig. 2 Merge sort algorithm demonstration

As the algorithm is implemented through recursion, we

can use a new thread for each new recursive call. That is all

dividing operations will be executed in parallel as it is

showed in [1]. After synchronizing division threads a merge

operation is performed sequentially. But this method does

not give impressive speedup. If sequential merge sort

required log(n) times n operations, here that operations are

performed in parallel and we have complexity of n. So

speedup here is only log(n). We can conclude that the

bottleneck here is the merge part which is performed

sequentially. So we need to parallelize merging. Merging can

be parallelized by using nested parallelism as it is showed in

[1]. Schematically parallel merging is represented in Fig. 3.

Fig. 3 Parallel merge

Assume that we need to merge subarrays T1[p1… r1] and

T2[p2…r2] into the subarray A[p3… r3]. Letting x = T[q1] be

the median of T1[p1…r1] and q2 be the position in T2[p2…r2]

such that x would fall between T2[q2 – 1] and T2[q2], every

element in subarrays T1[p1…q1 – 1] and T2[p2…q2 – 1] is

less than or equal to x, and every element in the subarrays

T1[q1 + 1…r1] and T2[q2 + 1…r2] is at least x. To merge, we

compute the index q3 where x belongs in A[p3…r3], copy x

into A[q3], and then recursively merge T1[p1…q1 – 1] with

T2[p2…q2 – 1] into A[p3…q3 – 1] and T1[q1 + 1…r1] with

T2[q2…r2] into A[q3 + 1…r3]. And as it is shown in [1]

theoretically parallel merge sort is O(n/log(n2)) faster than

sequential merge sort.

Although we reached O(n/log(n2)) theoretical parallelism,

it is not working well in practice. The reason of that is in

thread count. It is apparent that in parallel version of merge

sort huge amount of threads are created which leads to CPU

and memory resource consumption and reduction of

effectiveness. So it would be nice to limit depth of recursion,

which will limit the number of creating threads. That can be

reached in two ways. The first is to define a threshold size of

a list and if in some level of recursion the size of list is less

than the defined size run sequential algorithm instead of

parallel. But this is not a complete restriction, because if the

input list is quite big than our defined threshold size then we

will get a lot of threads. To prevent this behavior we can

supply the second restriction – that is restriction through

depth. We can pass depth as a parameter to merge sort

function. On each recursion step it will be incremented and

when it becomes equal to zero we will finish recursion.

Depth should be chosen based on physical thread count of a

computer. Practical graphs of speedup as a function of input

list is shown in Fig. 4. Here threshold is chosen 1024 and

computer has 2 cores with hyper threading.

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

5,0
00

10,0
00

50,0
00

100,0
00

500,0
00

1,0
00,0

00

Element count n

Sp
ee

d
u

p
 S

1 2 6

Fig. 4 Parallel merge sort performance. Speedup as a

function of element count

In Fig. 4 there are three graphs and each of them shows

speedup for depth 1, 2, 3. The graph in case of depth 4 is

quite like the graph with depth of 3. Beginning from depth 5

speedup starts to decrease. So for this computer optimal

depth would be 3 or 4. Fig. 4 shows that the algorithm is

more effective for larger lists.

This parallel version of merge sort requires additional

memory as much as input list. It uses also number of threads

but it is worth for time critical tasks.

4. PARALLELIZATION THROUGH

MULTITHREADING

Threading provides a mechanism for programmers to divide

their programs into more or less independent tasks with the

property that when one thread is blocked another thread can

be run [2]. There can be several approaches by using

multithreading parallelization. Approaches can be specific to

a sorting algorithm or generic for all sorting algorithms. For

specific approaches complexity of the new parallel algorithm

is also very specific.

As an example of general approach can be - dividing input

list into several smaller lists, sort each new list in a new

thread and merge them into the final output list. In this case

complexity of a sorting algorithm is predictable. It can be

represented as sum of copying, sorting, and merging

complexities.

At the beginning there is a need to copy from input list

into t smaller lists, where t is the number of threads. Each

smaller list has size of n/t, where n is the size of our input

list. Copying requires n iterations and has linear complexity

O(n).

Complexity of sorting each small list can be computed by

replacing n with n/t in algorithm’s complexity’s formula. For

instance as bubble sort’s complexity is O(n2), complexity of

sorting each small list would be O(n2/t2).

 Merging two lists into the third one requires n1+n2 steps,

where n1 and n2 are the sizes of lists. In our case for each

merge iteration we merge the current list with the size of n/t

and output list the size of which is different for each

iteration. On the first iteration we need to merge lists with

sizes of n/t and 0, on the second iteration – lists with sizes of

n/t and n/t, on the third iteration – lists with sizes of n/t and

2n/t. On the last iteration we need to merge lists with sizes

n/t and (t-1)n/t. Now we need to calculate the sum of all

merges’ steps. The size of output list on each iteration

increases by n/t and can be represented as arithmetic

progression with t terms (0, n/t, 2·n/t,…, (t - ·)·n/t). Total

steps for all merges can be calculated as follow:

   1
2

1
2

)1(
0

2

1








 
 t

n
t

n
nt

t

nt

t

n
t

Finally we can say that the multithreaded parallel sorting

algorithm’s complexity can be represented as

 







 1

2
lg t

n
OnO orithma , (5)

where orithmaO lg is algorithm specific complexity.

Multithreaded parallel bubble sort’s complexity would be

 







 1

22

2

t
n

t

n
nO . (6)

It is worth mentioning that count of threads that can be

executed simultaneously depends on the environment i.e.

number of processors, hyper threading. It is clear from (6)

that for large values of t (approximately to n) this

multithreaded parallel version is inefficient, because

complexity of merging becomes quadratic. Although the

algorithm’s complexity remains quadratic, but for optimal

values of t and n it has high speedup. Graph of speedup as a

function of thread count based on experiments is represented

in Fig. 5.

0

10

20

30

40

50

60

70

2 4 6 8 10 12 14 16 18 20 22 24

Number of threads t

Sp
e

e
d

u
p

 S

1 000 10 000 100 000

Fig. 5 Parallelization through multithreading. Speedup as

a function of count of threads

Fig. 5 shows speedup as a function of count of threads for

lists of sizes 1 000, 10 000, 100 000. It is clear from Fig. 5

that multithreaded parallel version of bubble sort works

better for big lists. As a disadvantage of this version can be

mentioned that it requires additional memory twice larger

than input list.

This version also can be used mixed with bubble sort’s

odd-even transposition method, which provides better

results. Experimental graph of speedup as a function of count

of threads in case of multithreaded bubble sort with odd-

even transposition method is represented in Fig. 6.

0

20

40

60

80

100

120

140

160

2 4 6 8 10 12 14 16 18 20 22 24

Number of threads t

Sp
ee

d
u

p
 S

1 000 10 000 100 000

 Fig. 6 Parallelization through multithreading using odd-even

transposition method. Speedup as a function of count of

threads

Comparing the results of Fig. 5 and Fig. 6 it is clear that

the multithreaded bubble sort with odd-even transposition
method is up to 2 times effective than just multithreaded

bubble sort.
Also note that this approach is not effective for merge sort

as main time consuming time for merge sort is final

sequential merges.

5. PARALLELIZATION THROUGH

OPENMP

OpenMP is a set of compiler directives, library routines, and

environment variables that specify shared-memory

concurrency in FORTRAN, C, and C++ programs [4].

OpenMP was first introduced in 1997. Basically all C++

compilers support the OpenMP language. OpenMP

directives demarcate code that can be executed in parallel

(called parallel regions) and control how the code is assigned

to threads [4]. In many applications, a large number of

independent operations are found in loops. Using the loop

work-sharing construct in OpenMP, we can split up these

loop iterations and assign them to threads for concurrent

execution. The parallel for construct will initiate a new

parallel region around the single for loop following the

pragma and divide the loop iterations among the threads of

the team. Upon completion of the assigned iterations, threads

sit at the implicit barrier at the end of the parallel region

waiting to join with the other threads [4].

As in multithreaded parallelization in parallelization

through OpenMP also can be specific and general

approaches. For example if there are independent operations

in loops of a sorting algorithm, it can be parallelized by

using loop work-sharing construct of OpenMP. That would

be specific to a sorting algorithm. As an example of general

approach can be - dividing input list into several smaller

lists, sort each new list in independently by using loop work-

sharing construct and merge them into the final output list.

This method is like the previously presented method with

multithreading.

In case of bubble sort simple loop work-sharing construct

will not work, because of loop operations dependencies. So

there can be two approaches here – either use the second

general method described above or use the loop work-

sharing construct with bubble sort’s odd-even transposition

modification.

The first general method is much like the bubble sort’s

multithreaded version and we will not go deep into it. The

only difference is that here each small list is sorted as a

separate loop operation. Experimental graph of speedup as a

function of thread count is represented in Fig. 7.

0

5

10

15

20

25

30

35

2 4 6 8 10 12 14 16 18 20 22 24

Number of threads t

Sp
e

ed
u

p
 S

1 000 10 000 100 000

Fig. 7 Parallelization through Open MP. Speedup as a

function of count of threads

As in Fig. 5, Fig. 6 as well as in Fig. 7 parallel algorithm

is more effective for large lists. For the second method we

will use bubble sort algorithm’s modification represented in

paragraph III. As it is shown in [4] for a common list, the

parallel version of bubble sort will perform n iterations of the

main loop and for each iteration a number of n-1

comparisons and (n-1)/2 exchanges will be performed in

parallel. For this version we let OpenMP choose the number

of threads. As a rule in that case the thread number equals to

physical thread count of processors. If the number of threads

is lower than n/2, every processor will execute (n/2)/t

comparisons. In this case the complexity of the algorithm

will be O(n2/2t). If the number of physical threads is higher

than n/2, the complexity level of the inner loops is O(1)

because all the iterations are performed in parallel. The main

loop will be executed for maximum n times. So we can

conclude that the complexity level of the algorithm is linear -

O(n), which is better than conclude that the complexity level

of the algorithm is linear - O(n), which is better than O(n log

n), the complexity of the fastest known sequential sorting

algorithm. As a result – theoretically bubble sort can have

complexity of O(n) if the number of physical threads equals

the size of input list. But this is not much practical, because

in practice the lists that need to be sorted are many times

larger than the count of physical threads of a computer.

Note that this approach is also not effective for merge sort

as main time consuming time for merge sort is final

sequential merges.

6. CONCLUSION

In this work we represented several methods of

parallelization of sorting algorithms and implemented some

of them on the example of bubble sort and merge sort. By

using odd-even transposition method we acquired speedup

approximately 2 for lists of all sizes. Multithreaded version

of bubble sort for large lists provides speedup up to 70.

Multithreaded version of bubble sort with odd-even

transposition method is more effective and provides speedup

up to 140. Parallelization through OpenMP is also more

effective with large lists, it provides speedup up to 35. But

this versions require two times bigger additional memory

than the input list’s memory. If the count of physical threads

equal the input list’s size linear complexity can be reached

by using odd-even transposition method with OpenMP.

Parallelization of merge sort provided speedup up to 6.5

times in case of depth 3 or 4. For merge sort pattern is

basically the same – it is more effective for larger lists.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,

“Introduction to algorithms,” 3rd ed., Cambridge,

Massachusetts, London, England, The MIT Press, 2009

[2] P. S. Pacheco, “An Introduction to parallel

programming”, University of San Francisco, 2011, pp.

1-3, 61-62

[3] A. J. Bernstein, “Analysis of programs for parallel

processing”, IEEE Trans. Electronic Computers, vol.

15, pp. 757-763, Oct. 1966

[4] C. Breshears, “The art of concurrency”, O’Reilly, 2009

[5] B. Chapman, G. Jost, R. van der Pas, “Using OpenMP:

Portable shared memory parallel programming”,

Cambridge, Massachusetts, London, England, The MIT

Press, 2008 year.

