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ABSTRACT 
In this work we supply several approaches of parallelization 

of sorting algorithms. There are a lot of sorting algorithms 

that differ from each other by their effectiveness, resource 

usage etc. We show three different types of parallelization 

for sorting algorithms - parallelization through algorithm 

modification, multithreading, OpenMP. In this work as an 

example we represent and develop parallel versions of 

bubble sort and merge sort algorithms. Bubble sort is 

considered as one of the most simple, but inefficient sorting 

algorithms. There are many other more preferable sorting 

algorithms that are widely used. This work shows that 

parallelization of bubble sort makes it quite effective and can 

be compared with other more effective and widely used 

sequential sorting algorithms. Merge sort is considered to be 

a more complex and effective algorithm, but we represent a 

more effective version of it. We also do compare the 

speedup for each parallel version and find out a more 

efficient parallel algorithm. In this work we use C++ 

programming language (with the new C++11, C++14 

standards) for developing our algorithms.  
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1. INTRODUCTION

Many computer scientists consider sorting to be the most 

fundamental problem in the study of algorithms. Many 

engineering issues come to the fore when implementing 

sorting algorithms. The fastest sorting program for a 

particular situation may depend on many factors, such as the 

memory hierarchy (caches and virtual memory) of the host 

computer, and the software environment. Many of these 

issues are best dealt with at the algorithmic level, rather than 

by “tweaking” the code [1]. 

In computer science there are many sorting algorithms 

such as bubble sort, insertion sort, merge sort, quick sort, etc. 

They differ in their functionality, performance, resource 

usage. In this work as an example we will focus on bubble 

sort and merge sort algorithms. Bubble sort is considered as 

the oldest sorting algorithm. It is popular, but inefficient 

sorting algorithm. It works by repeatedly swapping adjacent 

elements that are out of order [1]. Bubble sort has O(n2) 

average complexity. The best case of bubble sort is O(n), it 

is when the input list is already sorted. Merge sort is a divide 

and conquer algorithm. It divides unsorted list into n list, that 

each of them contains only one element. After that it 

repeatedly merges subsists and form the final list. Merge sort 

has O(n·log(n)) average complexity. It’s complexity for the 

best case is also O(n·log(n)). 

In this work our goal is to find parallelization methods 
for sorting algorithms and demonstrate them on bubble sort 

and merge sort algorithms which will make them work faster 

than the original versions. At the end we will compare all the 

developed parallel versions. 

2. THE NEED OF PARALLELIZATION

From 1986 to 2002 the performance of microprocessors 

increased, on average, 50% per year. Since 2002, however, 

single-processor performance improvement has slowed to 

about 20% per year. This difference is dramatic: at 50% per 

year, performance will increase by almost a factor of 60 in 

10 years, while at 20%, it will only increase by about a factor 

of 6. By 2005, most of the major manufacturers of 

microprocessors had decided rather than trying to continue to 

develop ever-faster monolithic processors, manufacturers 

started putting multiple complete processors on a single 

integrated circuit. This change has a very important 

consequence for software developers: simply adding more 

processors will not magically improve the performance of 

the vast majority of serial programs. Such programs are 

unaware of the existence of multiple processors, and the 

performance of such a program on a system with multiple 

processors will be effectively the same as its performance on 

a single processor of the multiprocessor system [2]. So 

increasing a program’s performance there is a need to 

parallelize that program, especially the algorithms that are 

used in that program.  

One of the most important criteria of a program’s 

parallelization is the speedup. It shows how many times the 

parallel program works faster than the sequential one, when 

both programs are solving the same problem. If Ts is the 

execution time of the sequential program for our problem 

and TP is the execution time of the parallel program used to 

solve the same problem, then the speedup formula is  
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If we run our program on p cores, then the best case would 

be when 

pTS  PT  (2) 

This is called a linear speedup. But According to Gene 

Amdahl’s law even in ideal parallel programs it’s hard to get 

such a result, because in every program there is some α 

fraction that cannot be parallelized. The parallel execution 

time and the speedup will be 
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This means that a program’s speedup cannot exceed the 

number in (4). In this work we will compute the speedup by 

(1) for bubble sort’s each parallel version and compare them. 



3. PARALLELIZATION THROUGH

ALGORITHM MODIFICATION

In this version of parallelization we concentrate on algorithm 

modification. This method is very individual for every 

sorting algorithm. We will develop parallel versions of 

bubble sort and merge sort independently.  

3.1. Parallelization of bubble sort 
In that case two instructions can be executed in parallel if 

they satisfy Bernstein’s conditions. Let Pi and Pj be two 

program segments. For Pi, let Ii be all of the input variables 

and Oi the output variables, and likewise for Pj. Pi and Pj are 

independent if they satisfy  

 ij OI  , 

 ji OI  , 

 ji OO  , [3] 

One of the parallelization ways of sorting algorithms can 

be modification of the algorithm in a way of those operations 

in loops and frequently executed instructions satisfy 

Bernstein’s conditions. In this case parallelization can be 

done through a pipeline mechanism. Every iteration can be 

performed independently from the previous one.  

In case of bubble sort algorithm, each iteration’s operations 

depend on the previous iteration’s result, so there is a need to 

make some change in order to make possible the 

instructions’ parallel execution. For that purpose we can use 

Odd-Even transposition method and divide our input list into 

two imaginary lists – odds and evens. On one pass through 

the list, we can compare an odd index and the right adjacent 

even index element; in the succeeding phase, it compares an 

even index and the right adjacent odd index element. The 

odd and even phases are repeated until no exchanges of data 

are required. This will allow instructions of each loop to be 

independent. Schematically this is represented in Fig. 1. 

Fig. 1 Using odd-even transposition method 

By odd-even transposition method we can sort n elements 

in n phases, each of which requires n/2 compare-exchange 

operations. Although the complexity of this algorithm is still 

O(n2), but there is already increase of performance. In future 

chapters we will use this method and modify it again by 

combining with multithreading. 

Now when we have the first parallel version of bubble 

sort we can experimentally measure the execution time of 

sequential and parallel algorithms, compute speedup. For 

getting more accurate results we will repeat the above 

operations for many times with different input lists that will 

be generated randomly. Speedup is approximately 2 (S = 1.8 

– 2.3) independently from input list size.

First parallel version of bubble sort with using 

odd-even transposition method does not require any 

additional memory.  

3.2. Parallelization of merge sort 
Merge sort can be well parallelized due to use of divide and 

conquer method. Merge sort’s original algorithm is 

demonstrated in Fig. 2 

Fig. 2 Merge sort algorithm demonstration 

As the algorithm is implemented through recursion, we 

can use a new thread for each new recursive call. That is all 

dividing operations will be executed in parallel as it is 

showed in [1]. After synchronizing division threads a merge 

operation is performed sequentially. But this method does 

not give impressive speedup. If sequential merge sort 

required log(n) times n operations, here that operations are 

performed in parallel and we have complexity of n. So 

speedup here is only log(n). We can conclude that the 

bottleneck here is the merge part which is performed 

sequentially. So we need to parallelize merging. Merging can 

be parallelized by using nested parallelism as it is showed in 

[1]. Schematically parallel merging is represented in Fig. 3. 

Fig. 3 Parallel merge 

Assume that we need to merge subarrays T1[p1… r1] and 

T2[p2…r2] into the subarray A[p3… r3]. Letting x = T[q1] be 

the median of T1[p1…r1] and q2 be the position in T2[p2…r2] 

such that x would fall between T2[q2 – 1] and T2[q2], every 

element in subarrays T1[p1…q1 – 1] and T2[p2…q2 – 1] is 

less than or equal to x, and every element in the subarrays 

T1[q1 + 1…r1] and T2[q2 + 1…r2] is at least x. To merge, we 

compute the index q3 where x belongs in A[p3…r3], copy x 

into A[q3], and then recursively merge T1[p1…q1 – 1] with 

T2[p2…q2 – 1] into A[p3…q3 – 1] and T1[q1 + 1…r1] with 

T2[q2…r2] into A[q3 + 1…r3]. And as it is shown in [1] 

theoretically parallel merge sort is O(n/log(n2)) faster than 

sequential merge sort.  

Although we reached O(n/log(n2)) theoretical parallelism, 

it is not working well in practice. The reason of that is in 

thread count. It is apparent that in parallel version of merge 

sort huge amount of threads are created which leads to CPU 

and memory resource consumption and reduction of 

effectiveness. So it would be nice to limit depth of recursion, 

which will limit the number of creating threads. That can be 

reached in two ways. The first is to define a threshold size of 

a list and if in some level of recursion the size of list is less 

than the defined size run sequential algorithm instead of 

parallel. But this is not a complete restriction, because if the 

input list is quite big than our defined threshold size then we 

will get a lot of threads. To prevent this behavior we can 

supply the second restriction – that is restriction through 

depth. We can pass depth as a parameter to merge sort 



function. On each recursion step it will be incremented and 

when it becomes equal to zero we will finish recursion. 

Depth should be chosen based on physical thread count of a 

computer. Practical graphs of speedup as a function of input 

list is shown in Fig. 4. Here threshold is chosen 1024 and 

computer has 2 cores with hyper threading. 
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Fig. 4 Parallel merge sort performance. Speedup as a 

function of element count 

In Fig. 4 there are three graphs and each of them shows 

speedup for depth 1, 2, 3. The graph in case of depth 4 is 

quite like the graph with depth of 3. Beginning from depth 5 

speedup starts to decrease. So for this computer optimal 

depth would be 3 or 4. Fig. 4 shows that the algorithm is 

more effective for larger lists.  

This parallel version of merge sort requires additional 

memory as much as input list. It uses also number of threads 

but it is worth for time critical tasks. 

4. PARALLELIZATION THROUGH

MULTITHREADING

Threading provides a mechanism for programmers to divide 

their programs into more or less independent tasks with the 

property that when one thread is blocked another thread can 

be run [2]. There can be several approaches by using 

multithreading parallelization. Approaches can be specific to 

a sorting algorithm or generic for all sorting algorithms. For 

specific approaches complexity of the new parallel algorithm 

is also very specific. 

As an example of general approach can be - dividing input 

list into several smaller lists, sort each new list in a new 

thread and merge them into the final output list. In this case 

complexity of a sorting algorithm is predictable. It can be 

represented as sum of copying, sorting, and merging 

complexities.  

At the beginning there is a need to copy from input list 

into t smaller lists, where t is the number of threads. Each 

smaller list has size of n/t, where n is the size of our input 

list. Copying requires n iterations and has linear complexity 

O(n).  

Complexity of sorting each small list can be computed by 

replacing n with n/t in algorithm’s complexity’s formula. For 

instance as bubble sort’s complexity is O(n2), complexity of 

sorting each small list would be O(n2/t2). 

 Merging two lists into the third one requires n1+n2 steps, 

where n1 and n2 are the sizes of lists. In our case for each 

merge iteration we merge the current list with the size of n/t 

and output list the size of which is different for each 

iteration. On the first iteration we need to merge lists with 

sizes of n/t and 0, on the second iteration – lists with sizes of 

n/t and n/t, on the third iteration – lists with sizes of n/t and 

2n/t. On the last iteration we need to merge lists with sizes 

n/t and (t-1)n/t. Now we need to calculate the sum of all 

merges’ steps. The size of output list on each iteration 

increases by n/t and can be represented as arithmetic 

progression with t terms (0, n/t, 2·n/t,…, (t - ·)·n/t). Total 

steps for all merges can be calculated as follow: 
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Finally we can say that the multithreaded parallel sorting 

algorithm’s complexity can be represented as  
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where orithmaO lg is algorithm specific complexity. 

Multithreaded parallel bubble sort’s complexity would be 
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It is worth mentioning that count of threads that can be 

executed simultaneously depends on the environment i.e. 

number of processors, hyper threading. It is clear from (6) 

that for large values of t (approximately to n) this 

multithreaded parallel version is inefficient, because 

complexity of merging becomes quadratic. Although the 

algorithm’s complexity remains quadratic, but for optimal 

values of t and n it has high speedup. Graph of speedup as a 

function of thread count based on experiments is represented 

in Fig. 5.  
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Fig. 5 Parallelization through multithreading. Speedup as 

a function of count of threads 

Fig. 5 shows speedup as a function of count of threads for 

lists of sizes 1 000, 10 000, 100 000. It is clear from Fig. 5 

that multithreaded parallel version of bubble sort works 

better for big lists. As a disadvantage of this version can be 

mentioned that it requires additional memory twice larger 

than input list.  

This version also can be used mixed with bubble sort’s 



odd-even transposition method, which provides better 

results. Experimental graph of speedup as a function of count 

of threads in case of multithreaded bubble sort with odd-

even transposition method is represented in Fig. 6. 
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 Fig. 6 Parallelization through multithreading using odd-even 

transposition method. Speedup as a function of count of 

threads 

Comparing the results of Fig. 5 and Fig. 6 it is clear that 

the multithreaded bubble sort with odd-even transposition 
method is up to 2 times effective than just multithreaded 

bubble sort.  
Also note that this approach is not effective for merge sort 

as main time consuming time for merge sort is final 

sequential merges. 

5. PARALLELIZATION THROUGH

OPENMP

OpenMP is a set of compiler directives, library routines, and 

environment variables that specify shared-memory 

concurrency in FORTRAN, C, and C++ programs [4]. 

OpenMP was first introduced in 1997. Basically all C++ 

compilers support the OpenMP language. OpenMP 

directives demarcate code that can be executed in parallel 

(called parallel regions) and control how the code is assigned 

to threads [4]. In many applications, a large number of 

independent operations are found in loops. Using the loop 

work-sharing construct in OpenMP, we can split up these 

loop iterations and assign them to threads for concurrent 

execution. The parallel for construct will initiate a new 

parallel region around the single for loop following the 

pragma and divide the loop iterations among the threads of 

the team. Upon completion of the assigned iterations, threads 

sit at the implicit barrier at the end of the parallel region 

waiting to join with the other threads [4]. 

As in multithreaded parallelization in parallelization 

through OpenMP also can be specific and general 

approaches. For example if there are independent operations 

in loops of a sorting algorithm, it can be parallelized by 

using loop work-sharing construct of OpenMP. That would 

be specific to a sorting algorithm. As an example of general 

approach can be - dividing input list into several smaller 

lists, sort each new list in independently by using loop work-

sharing construct and merge them into the final output list. 

This method is like the previously presented method with 

multithreading.  

In case of bubble sort simple loop work-sharing construct 

will not work, because of loop operations dependencies. So 

there can be two approaches here – either use the second 

general method described above or use the loop work-

sharing construct with bubble sort’s odd-even transposition 

modification.  

The first general method is much like the bubble sort’s 

multithreaded version and we will not go deep into it. The 

only difference is that here each small list is sorted as a 

separate loop operation. Experimental graph of speedup as a 

function of thread count is represented in Fig. 7.  
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Fig. 7 Parallelization through Open MP. Speedup as a 

function of count of threads 

As in Fig. 5, Fig. 6 as well as in Fig. 7 parallel algorithm 

is more effective for large lists. For the second method we 

will use bubble sort algorithm’s modification represented in 

paragraph III. As it is shown in [4] for a common list, the 

parallel version of bubble sort will perform n iterations of the 

main loop and for each iteration a number of n-1 

comparisons and (n-1)/2 exchanges will be performed in 

parallel. For this version we let OpenMP choose the number 

of threads. As a rule in that case the thread number equals to 

physical thread count of processors. If the number of threads 

is lower than n/2, every processor will execute (n/2)/t 

comparisons. In this case the complexity of the algorithm 

will be O(n2/2t). If the number of physical threads is higher 

than n/2, the complexity level of the inner loops is O(1) 

because all the iterations are performed in parallel. The main 

loop will be executed for maximum n times. So we can 

conclude that the complexity level of the algorithm is linear - 

O(n), which is better than conclude that the complexity level 

of the algorithm is linear - O(n), which is better than O(n log 

n), the complexity of the fastest known sequential sorting 

algorithm. As a result – theoretically bubble sort can have 

complexity of O(n) if the number of physical threads equals 

the size of input list. But this is not much practical, because 

in practice the lists that need to be sorted are many times 

larger than the count of physical threads of a computer. 

Note that this approach is also not effective for merge sort 

as main time consuming time for merge sort is final 

sequential merges. 

6. CONCLUSION

In this work we represented several methods of 

parallelization of sorting algorithms and implemented some 



of them on the example of bubble sort and merge sort. By 

using odd-even transposition method we acquired speedup 

approximately 2 for lists of all sizes. Multithreaded version 

of bubble sort for large lists provides speedup up to 70. 

Multithreaded version of bubble sort with odd-even 

transposition method is more effective and provides speedup 

up to 140. Parallelization through OpenMP is also more 

effective with large lists, it provides speedup up to 35. But 

this versions require two times bigger additional memory 

than the input list’s memory. If the count of physical threads 

equal the input list’s size linear complexity can be reached 

by using odd-even transposition method with OpenMP. 

Parallelization of merge sort provided speedup up to 6.5 

times in case of depth 3 or 4. For merge sort pattern is 

basically the same – it is more effective for larger lists. 
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