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ABSTRACT 
Solutions of eigenvalues and eigenvectors of complex 

Hermitian matrices are widespread and have a very 

important role in scientific calculations. These solutions can 

be obtained from linear algebra libraries by the functions of 

Lapack and by its parallel version ScaLapack in systems 

with general and distributed memory, respectively. However, 

it’s more beneficial to get these solutions in hybrid 

architectures which require a new development of algorithms 

to efficiently organize non-uniformity and massive 

parallelization in a graphical processor. The main objective 

of this paper is to present the performance of standard, as 

well as generalized case of solutions of eigenvalues and 

eigenvectors of complex and double complex Hermitian 

matrices on Tesla C1060 accelerator. 
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1. INTRODUCTION
Calculations of eigenvalue problems are usually in great 

demand. Scientific calculation expressions, which are 

transmitted through the environment, such as earthquakes, a 

building vibration, the energy levels of electrons in 

nanostructured compounds,  require solutions of eigenvalue 

problems. Solutions of eigenvalue problems are also required 

in quantum chemistry and atomic physics.   

Subprograms of the package Lapack of linear algebra are 

intended for systems with general memory. MAGMA 

package expands Lapack for heterogeneous architecture, and 

its performance for modeling is an important value using the 

computing capacity of such architecture. To use the 

heterogeneous architecture, MAGMA is based on a hybrid 

programming paradigm and static arrangement of the 

scheme, in other words the algorithm first is divided into 

smaller computational problems that afterwards are statically 

arranged in a graphical processor. 

This work focuses on one node of GPU-CPU hybrid 

architecture. In this work the following form of Hermitian 

matrix eigenproblem is studied:  Az = λz is   standard and Az 

= λBz is   generalized, where A is a Hermitian matrix and B 

is Hermitian positively defined. 

The sizes of matrices here are several thousands and there is 

no need to solve this problem in large distributed memory 

systems. That’s why we develop algorithms that will 

effectively scale the massive parallelization in general 

memory systems, particularly in GPU-CPU hybrid 

multiprocessor systems.   

The eigensolutions obtained in this work are important 

results in high performance calculations which provide 

protection for hybrid architectures and sufficiently increase 

the productivity.  

2. RELATED WORK
 Linear algebra libraries Lapack [1] and ScaLapack [2] 

contain a collection of eigensolutions procedures for general 

and distributed memory systems, respectively. 

Hermitian eigenproblem solution is implemented through the 

following main steps. Using the Householder transformation, 

the matrix is reduced to a tridiagonal form. The acceleration 

of the eigenproblem solution depends on the acceleration of 

reduction to a tridiagonal form. 

The standard step of reducing to a tridiagonal form in 

Lapack is a ―single phase‖ (also known as ―one-stage‖) [3]. 

The two-stage approach is actual where the matrices are first 

transformed into a band form and second they are reduced to 

a final tridiagonal form. 

For two-sided analysis Tomov et al. [4] have presented 

algorithms of a new hybrid transformation which complete 

the graphic processor high performance taking advantage of 

GPU high throughput capacity.  

Bientinesi et al. [5] have accelerated the two-stage approach 

through Successive Band Reduction (SBR) tools. SBR [6] 

tools used  two-sided orthogonal transformations based on 

Householder reflectors and successively reduced the matrix 

bandwidth size until a suitable width was reached.  

Making use of subprograms of MAGMA set, the task of 

eigenvalue problem was run for the complex Hermitian 

matrices on GPU graphic processor. Programs have been run 

to find complex and double complex eigenvalues and 

eigenvectors for Az = λz and  Az = λBz eigensolutions, as 

well as performance was obtained when the reduction of 

matrices to tridiagonal form was realized in case of one-

stage and two-stage analyses.  

3. HYBRID STANDARD

EIGENSOLUTIONS
To solve the eigensolutions of the Hermitian problem of the 

following form Az = λz, Λ eigenvalues and Z eigenvectors 

should be found so, that A=Z Λ ZH, where H is the conjugate-

transpose. The standard algorithm consists of three steps [7], 

[8]. First, by the Q orthogonal transformation the matrix is 

reduced to a tridiagonal form called ―a reduction phase‖, so 

that A=QTQH, where T is a tridiagonal matrix. Second, the 

eigencouples of tridiagonal matrix are calculated (Λ, E), 

called ―a solution phase‖. Third, the eigenvectors of the 

tridiagonal matrix should be brought back to the 

eigenvectors of the initial matrix Z=QE called ―a back 

transformation phase‖. It is well known that the first phase - 

―the reduction phase‖, depending on some processes, takes 

much more time than the other two stages. Therefore, there 

are several approaches for the reduction of Hermitian matrix 

to tridiagonal form. Among the existing approaches are one-

stage and two-stage analyses. The standard one-stage 



approach of reducing to a tridiagonal form is used in 

eigensolutions of LAPACK library [9]. Now it has been 

developed for hybrid architecture and is also used in 

MAGMA package [10]. It performs the function xHEEVD, 

where x can be as c and z which are for complex and double 

complex values, correspondingly. MAGMA also contains 

the function xHEEVDX which finds not only all 

eigensolutions but also the eigensolutions in the mentioned 

range. For the generalized form of eigensolutions they are 

the functions xHEGVD and xHEGVDX, correspondingly. In 

these functions the reduction of the symmetric matrix to the 

tridiagonal form is realized through xHETRD subprogram. 

In case of two-stage approach of eigensolutions the matrix is 

reduced to a band matrix in the first step, and in the second 

step the band matrix is reduced to a tridiagonal form using a 

bulge chasing technique [11]. In case of two-stage approach 

xheevdx_2stage and xhegvdx_2stage subprograms of 

MAGMA package are used correspondingly for Az = λz 

standard and Az = λBz generalized solutions of both forms. 

During this hybrid development the xHEGST subprogram 

transforms the general problem into a standard one. 

Divide and Conquer algorithm is used in all programs to find 

the eigensolutions. Standard Divide and Conquer algorithm 

calculates all the eigenvalues and eigenvectors of the 

tridiagonal matrix [12]. 

  

4. RESULTS OF STANDARD 

EIGENSOLUTIONS 
 

 
 

(a) all eigenvectors 

 

 
 

(b) 10% eigenvectors 

 
Fig. 1. Complex precision 

 

 

 

 

(c) all eigenvectors 

 

 

(d) 10% eigenvectors 

Fig. 2. Double complex precision 

 

Figures 1 and 2 show the results of Az = λz standard 

eigensolutions for various sizes of complex precision and 

double complex precision matrices, correspondingly. Given 

the graphs of one-stage and two-stage approaches of the 

problem solution. During the problem solution much more 

time takes the reduction of the matrix to a tridiagonal form. 

Note that in case of one-stage the matrix is immediately 

reduced to a tridiagonal form through xHETRD subprogram, 

then it finds the solutions, while in case of two-stage the 

matrix first is reduced to a banded form using BLAS 3, then 

the banded matrix is reduced to a tridiagonal form using the 

so-called bulge chasing technique; and after finding the 

solutions a back transformation of eigenvectors is carried 

out. The reduction of the matrix to a tridiagonal form in case 

of two-stage is twice faster than in one-stage case.  

However, if all the vectors are required to be found during 

the process of finding the eigenvectors of two-stage, then the 

problem operation slows down by virtue of back 

transformation of vectors. Since the global memory of Tesla 

C1060 is 4Gb, and the matrices are completely transferred to 

GPU, and as in case of standard solution one matrix is 

entered, hence, in case of complex values a 10112 size-

matrix is entered, while in case of double complex – 7040 

size matrix. 

 

 

 

 

 

 



 

5. RESULTS OF GENERALIZED 

EIGENSOLUTIONS 

 

 

(a) all eigenvectors 

 

 

(b) 10% eigenvectors 

 

Fig. 3. complex precision 

 

 

 

(c) all eigenvectors 

 

 

 

(d) 10% eigenvectors 

 
Fig. 4 double complex precision 

 

Figures 3 and 4 show the results of Az = λBz generalized 

Hermitian eigensolutions correspondingly for complex 

precision and double complex precision matrices of various 

sizes. There have also been observed one-stage and two-

stage approaches of reducing to a tridiagonal form. In case of 

Az = λBz generalized solutions first of all xPOTRF analysis 

of Kholetski is made, afterwards in order to transform the 

generalized problem into a standard one, xHEGST and 

xTRSMM transformations are applied. In case of Az = λ Bz 

generalized solutions the same result is obtained as in case of 

standard solutions, but as two matrices A and B are to be 

entered, therefore, in case of complex the sizes of the entered 

matrices should be 8064-dimensional and in case of double 

complex - 6016-dimensional based on GPU global memory.   

 

6. CONCLUSION  
Performance of eigenvalues and eigenvectors solutions of 

Hermitian matrices on Tesla C1060 accelerator is presented 

in this article. The problem was observed for both forms of 

Az = λz standard and Az = λBz generalized solutions. One-

stage and two-stage approaches of reduction to tridiagonal 

form of a matrix have been presented for them. The results 

show that if one needs to find all the eigenvectors despite the 

fact that the approach of reducing to a tridiagonal form is 

twice faster, nevertheless, the two-stage approach of problem 

solution concedes to the one-stage approach as the back 

transformation of eigenvectors takes considerable time. In 

this case the problem solution time, depending on the 

increase of the matrix sizes, grow at 10%-20%. And if less 

eigenvectors are required to be found in the problem of 

eigensolutions, e.g., 10% - 50%, then the two-stage approach 

is more effective than the one-stage approach as in case of 

double complex it is twice faster and in case of complex – 

1,5 times, therefore, much more time is saved for solving 

eigenproblems.  
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