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ABSTRACT
In this paper logarithmic formula is derived which al-
lows to compute exact number of necessary operations
for computing discrete Fourier transform (DFT) of com-
posite (q × 2p, where q is an arbitrary odd integer)
length. Developed expressions allow to compute the
number of arithmetic operations for both 2/4 and 2/8
split-radix algorithms.
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1. INTRODUCTION
The discrete Fourier transform has a wide range of ap-
plications in many fields of science and engineering[1],[2],[3].
The main reason for its popularity is the existence of
various algorithms which allows to significantly reduce
the computational complexity. These algorithms are
generally known as the fast Fourier transforms (FFT).
Fast algorithm for efficient computation of DFT was
first introduced by Culey and Tukey by their historical
paper in 1965 [4]. FFT algorithms allows to compute
DFT of size N with O(N lgN) operations in opposite
of direct form computation which require O(N2) oper-
ations. There are number of FFT algorithm, but most
popular methods are based on fixed-radix and split-
radix approaches. Split-radix algorithms have been con-
sidered to be the most computationally efficient and
structurally regular.

Split-radix algorithm was introduced first by Yavne [5]
in 1969 and later by various authors Vetterli, Duhamel
[9],[15]. Split-radix algorithm allows to compute DFT of
N = 2m with 4N lgN−6N+8 arithmetic operations. In
recent years by various authors [6], a new modification
of split-radix algorithm was developed which allows to
perform DFT of N = 2m with slightly reduced number
of arithmetic operations.

For applications which need to perform DFT of sizes
N 6= 2m usually specialists use zero padding technique.
It means that input sequence is filled by zeros until it be-
comes power of two length for performing any available
FFT algorithm. Such method significantly decreases re-
quired number of arithmetic operations. Because DFT
for input sequences of non power two of length required
in many practical applications it is important problem.

Algorithm for computing DFT for sizes q× 2p, where q

is an odd integer, was first introduced by Bi and Chen
in 1998 [7]. Algorithm has a 2/4 split-radix structure
and in case of q = 1 has a same complexity as conven-
tional split-radix FFT algorithm. After that in 2004 by
Bouguezel and et.al. In [12] presented new improved
algorithm for q × 2p length DFT. Algorithm was based
on 2/8 split-radix FFT algorithm scheme and improves
such important factors as data transfer, address gen-
eration, twiddle factor computation and access to the
lookup table, but number of arithmetic operations has
not been reduced. In 2010 by Bi and Chen [8] published
a new paper where authors presented unified method
for generation of 2/2a (where a is a integer and a > 1)
split-radix algorithms for q × 2p length DFTs.

In this paper we developed general logarithmic formula
for calculating number of arithmetic operations for 2/4
and 2/8 split-radix algorithms for q × 2p length DFTs.
For all q < 20 special cases developed formulas for
counting exact number of arithmetic operations.

2. GENERAL ALGORITHM
Let x = {x0, x1, . . . , xN−1}T be a complex valued column-
vector of length N , where N = q × 2p and q is an odd
integer. The DFT of this vector is defined as

X[k] =

N−1∑
k=0

x[n]Wnk
N (1)

where

0≤ k ≤N−1, WN

n
= exp(−j 2π

N
n
)

=cos(
2π

N
n)−j sin(

2π

N
n),

j =
√
−1.

Below algorithm from [8] is presented. Even indices of
the transform are computed by

X[2k] =

N/2−1∑
n=0

(x[n] + x[n+N/2]])Wnk
N/2 (2)

where X[2k] is a N/2 DFT. The odd indices are defined
by

X[2ak + l] =

N−1∑
n=0

x[n]W
n(2ak+l)
N (3)

where 0 ≤ k ≤ (N/2a) − 1, and a is an integer (a > 1)
and l has a selected odd values so that 2ak + l gen-
erates N/2 odd integers that can be uniquely matched
to all the odd index values between 0 and N . With
some manipulations based on the periodic and symmet-



ric properties of W
n(2ak+l)
N , (3) can be represented as
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x′[n]Wnl
N Wnk
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+

(N/2a)−1∑
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x′[n+N/2a]W
(n+N/2a)l
N Wnk
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2a
]W
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2a
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N Wnk
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(4)

where n = 0, 1, 2 . . . , N/2− 1 and

x′[n] = x[n]− x[n+N/2]. (5)

It is seen that (4) is a length-N/2a DFT whose input
sequence is the result from the computation inside the
brackets of (4) for n = 0, 1, 2 . . . , N/2− 1. In summary,
the even indexed outputs of (1) are obtained from one
length-N/2 DFT defined in (2) based on the radix-2 de-
composition, and the odd indexed outputs are obtained
from a length-N/2a DFTs based on the radix-2a decom-
position. The complexity of algorithm can be computed
by the following expressions

C×N = C×N/2 + aC×N/2a + N
2a
C× + 2N − C×t ,

C+
N = C+

N/2 + aC+
N/2a + N

2a
C+ + 3N − C+

t ,
(6)

where by C× and C+ denote number of real multiplica-
tions and additions that are used for each of the inner
sums defined in (4), and C×t and C+

t are the number
of real multiplications and additions saved from all the
trivial twiddle factors Wnl

N in (4).

3. 2/4 SPLIT-RADIX ALGORITHM
For a = 2 the algorithm becomes a modified version of
conventional 2/4 split-radix algorithm. Inserting a = 2
in (4) we get

X[4k + l] =

N/4−1∑
n=0

Wnl
N (

1∑
n=0

x′[n+ i
N

4
]W il

N/4)Wnk
N/4 =

=

N/4−1∑
n=0

Wnl
N (x′[n] + (−j)lx′[n+

N

4
])Wnk

N/4

(7)
From (7) we can see that it reduces to conventional split-
radix algorithm which is reported in [5],[9],[10]. To cover
all odd indices we set l = {−1, 1}. In this case we have
arithmetic computational gain only in case of n = 0

and n = N/8 (W 0
N and W

lN/8
N twiddle factors become

trivial).
Now it is easy to see that the number of arithmetic
operations are

C+
N = C+

N/2 + 2C+
N/4 + 4N − 4q

C×N = C×N/2 + 2C×N/4 + 2N − 12q
(8)

Using difference equations theory [11] we developed the
software system which allows us to get the number of
arithmetic operations required for computation of (7) in
logarithmic form

C+
N = 8

3
pq2p −

2p(28q−3C+
2q
−3C+

q )

9
+

+
(−1)p(10q−3C+

2q
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9
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3
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9
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9
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(9)

where by Cq and C2q are denoted the complexities of q
and 2q length DFTs, respectively. Using methods from
[7] for computing 2q-length DFT we have

C+
2q = 2C+

q + 4q,

C×2q = 2C×q
(10)

finally puting (10) into (9) and 2p = N
q

we get
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3
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9
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9
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9
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(11)
4q-length DFT can be computed by

C+
4q = 4C+

q + 16q

C×4q = 4C×q

Using that and (8) we finally get the formula which
shows the number of real arithmetic operations of q×2p

C+
N = 8

3
pq2p − 2p

9
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(12)
It is interesting to see that if q = 1 and therefore C+

1 = 0
and C+

1 = 0 from (12) we can get

C+
N = 8

3
N log2N − 16

9
N − 2

9
(−1)log2 N + 2,

C×N = 4
3
N log2N − 38

9
N + 2

9
(−1)log2 N + 6

(13)

(13) is the same as the number of real arithmetic op-
erations count required by conventional split-radix al-
gorithm. Doing some optimization from [7] we get fol-
lowing recurrent expressions for computing 8q length
DFTs.

C+
8q = C+

4q + 4C+
q + 36q = 8C+

q + 52q,

C×8q = C×4q + 2C×q + 2C×sq = 6C×q + 2C×sq
(14)

where by C×sq the number of arithmetic operations re-
quired by divided DFT [7] is denoted. Using (14) we get
an improvement in the number of arithmetic operations
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3
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C×N = 4
3
pq2p − 2p

18
(82q − 3(5C×q + C×sq))+

+ 2
9
(7 q + 3 (C×q − C×sq))(−1)p + 6q =

= 4
3
N log2

(
N
q

)
− N

18

(
82− 3

q
(5C×q + C×sq)

)
+

+ 2
9
(7q + 3(C×q − C×sq))(−1)

log2

(
N
q

)
+ 6q

(15)

3.1 Comparison of Arithmetic Complexi-
ties

The number of additions and multiplications required
for computing DFT for complex input vector for var-
ious lengths is presented in Table 1. As an example



a range from 256 to 2048 is chosen. Using conven-
tional algorithm for 2p we can only compute DFT of
256, 512, 1024, 2048 sizes. If the size doesn’t equal to
these values we need to pad the input data up to next
2p. The q × 2p algorithm allows to cover the range
256 − 1024 with 27 new points. This approach allows
to significantly reduce the number of arithmetic opera-
tions. To find out the q for which the algorithm becomes
the most efficient in terms of the number of arithmetic
operations, first of all we cut the values of q for which
CN1 > CN2 , but N1 < N2, where CN = C+

N +C×N . It is
easy to see what only for 1, 3, 5, 9, 13, 15 condition pre-
sented above is true. For getting more accurate results
we compare the value of EN = CN

N
. Finaly we get

EN (9×2p) < EN (9×3p) < EN (9×15p) < EN (1×2p) <

< EN (5× 2p) < EN (15× 2p)

These results are graphically illustrated in Figure 1.

Table 1: Number of arithmetic operations re-
quired by 2/4 split-raidx algorithm for DFT
length 256-1024

N q p Add. Mul. Count
256 1 8 5380 1284 6664
272 17 4 6832 1720 8552
288 9 5 6036 1196 7232
304 19 4 9200 1672 10872
320 5 6 6736 1880 8616
352 11 5 9468 2204 11672
360 45 3 7812 1140 8952
384 3 7 8028 2192 10220
416 13 5 10852 2372 13224
448 7 6 10992 2760 13752
480 15 5 10956 2112 13068
512 1 9 12292 3076 15368
544 17 5 15092 4052 19144
576 9 6 13584 3136 16720
608 19 5 19996 4028 24024
640 5 7 15172 4580 19752
704 11 6 20784 5288 26072
720 45 4 17424 3000 20424
768 3 8 18096 5396 23492
832 13 6 23888 5784 29672
896 7 7 24364 6668 31032
960 15 6 24432 5460 29892
1024 1 10 27652 7172 34824
1088 17 6 33040 9464 42504
1152 9 7 30228 7724 37952
1216 19 6 43184 9576 52760
1280 5 8 33744 10840 44584
1408 11 7 45308 12380 57688
1440 45 5 38628 7620 46248
1536 3 9 40284 12816 53100
1664 13 7 52196 13700 65896
1792 7 8 53488 15688 69176
1920 15 7 53964 13344 67308
2048 1 11 61444 16388 77832

4. 2/8 SPLIT-RADIX ALGORITHM

In case of a = 4 the algorithm becomes 2/8 split-radix
algorithm.

X[8k + l] =

N/4−1∑
n=0

Wnl
N (

3∑
n=0

x′[n+ i
N

8
]W il

8 )Wnk
N/8

(16)
The total number of real multiplications and real addi-
tions required by the algorithm are

C+
N = C+

N/2 + 4C+
N/8 + 11

2
N − C+

t

C×N = C×N/2 + 4C×N/8 + 5
2
N − C×t

(17)

Below the number of arithmetic operations in logarith-
mic form are presented

C+
N = 11

4
pq2p − 55

16
q2p − 1

8
2p
(
C+

t − (2C+
q + C+

2qC
+
4q)
)

+

+ 1
4
C+

t + (−1)p2p/2

[7(12C+
q − 2(C+

2q + C+
4q + C+

t ) + 55q) cos(α)

+
√

7(4C+
q − 2(11C+

2q − 5C+
4q − C

+
t )− 99q) sin(α)]

C×N = 5
4
pq2p − 25

16
q2p − 1

8
2p
(
C×t − (2C×q + C×2qC

×
4q)
)

+

+ 1
4
C×t + (−1)p2p/2

[7(2(C×t − 6C×q + C×2q + C×4q)− 25q) cos(α)

+
√

7(C×t + 4C×q − 22C×2q + 5C×4q − 45q) sin(α)]

(18)
where with Cq,C2q and C4q denote number of arith-
metic operations required for computation of q, 2q and
4q length DFTs respectively.

α = p arctan(
√

7)

For computing 2q and 4q length DFT we can use meth-
ods described in previous section, which allow us to
rewrite (18) as

C+
N = 11

4
pq2p − 15

16
q2p − 1

8
2p
(
C+

t − 8C+
q

)
+ 1

4
C+

t +

+(−1)p2p/2 [7(15q − 2C+
t ) cos(α)+

+
√

7(2C+
t − 27q) sin(α)]

C×N = 5
4
pq2p − 25

16
q2p − 1

8
2p
(
C×t − 8C×q

)
+ 1

4
C×t +

+(−1)p2p/2 [7(25q − 2C×t ) cos(α)+

+
√

7(2C×t − 45q) sin(α)] (19)

5. CONCLUSION
In case of looking for a computationally efficient algo-
rithm in terms of number of multiplications in general
case we need to choose 2/8 split-radix FFT algorithm,
because of coefficient of N log2N is a fewer. Efficiency
of algorithms in terms of total number of arithmetic op-
erations is discussed below.
The total number of arithmetic operations required by
2/4 split-radix algorithm can be computed using (12)
and presented below

CN (2/4) = 4pq2p − 2p(6q − C+
q ) + 8q (20)

The total number of arithmetic operations required for
computation 2/8 split-radix algorithm can be retrieved



from (19)

CN (2/8) = 4pq2p − 2p( 5
2
q − ( 1

8
Ct − Cq)) + 8q+

+2(−1)p2p/2 × [7(20q − Ct) cos(α)+

+
√

7(Ct − 36q) sin(α)]
(21)

For getting the computational efficient algorithm we
need to subtract (21) from (20). For simplicity only
coefficients for 2p and q × 2pare included

CN (2/4)− CN (2/8) = ( 7
2
q − 1

8
Ct)2

p < 0

Ct > 28q
(22)

In other words we can say that if trade-off Ct is greater
than 28q, then 2/4 split-radix algorithm becomes more
efficient than 2/8 split-radix algorithm.

Table 2: Number of additions required by 2/8
split-raidx algorithm for DFT length 256-1024

N q p Add. Mul. Count
256 1 8 5380 1284 6664
272 17 4 6832 1720 8552
288 9 5 6036 1196 7232
304 19 4 9200 1672 10872
320 5 6 6736 1880 8616
352 11 5 9468 2204 11672
384 3 7 8028 2192 10220
416 13 5 10852 2372 13224
448 7 6 10992 2760 13752
480 15 5 10956 2112 13068
512 1 9 12292 3076 15368
544 17 5 15092 4052 19144
576 9 6 13584 3136 16720
608 19 5 19996 4028 24024
640 5 7 15172 4580 19752
704 11 6 20784 5288 26072
768 3 8 18096 5396 23492
832 13 6 23888 5784 29672
896 7 7 24364 6668 31032
960 15 6 24432 5460 29892
1024 1 10 27652 7172 34824
1088 17 6 33040 9464 42504
1152 9 7 30228 7724 37952
1216 19 6 43184 9576 52760
1280 5 8 33744 10840 44584
1408 11 7 45308 12380 57688
1536 3 9 40284 12816 53100
1664 13 7 52196 13700 65896
1792 7 8 53488 15688 69176
1920 15 7 53964 13344 67308
2048 1 11 61444 16388 77832
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