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ABSTRACT 
Cell phones and other mobile devices become the part of 

human culture and change activity and lifestyle patterns. 

Mobile phone technology continuously evolves and 

incorporates more and more sensors for enabling advanced 

applications. Latest generations of smart phones incorporate 

GPS and WLAN location finding modules, vision cameras, 

microphones, accelerometers, temperature sensors etc. The 

availability of these sensors in mass-market communication 

devices creates exciting new opportunities for data mining 

applications. Particularly healthcare applications exploiting 

build-in sensors are very promising. This chapter reviews 

different aspects of human activity recognition, including 

review of state-of-the-art, implementation and algorithmic 

aspects.  

Keywords 
Activity recognition, signal preprocessing, smartphone 
sensors, mobile computing, feature extraction 

1. INTRODUCTION
With the advent of miniaturized sensing technology, which 

can be body-worn or integrated in mobile devices, it is now 

possible to collect, store and process data on different 

aspects of human physical activity. This data can enable 

automated activity profiling systems to generate activity 

patterns over extended periods of time for health monitoring. 

Collection of activity patterns is dependent on recognition 

algorithms that may efficiently interpret body-worn sensor 

data. 

Existing activity recognition systems are constrained by 

practical limitations such as the number, location and nature 

of used sensors. Other issues include ease of deployment, 

maintenance, costs, and the ability to perform daily activities 

unimpeded. Sensors’ outputs might vary for the same 

activity across different subjects and even for the same 

individual. Errors can also arise due to variability in sensor 

signals caused by differences in sensor orientation, 

placement, and from environmental factors such as 

temperature sensitivity. Three main classes of activity 

recognition are reviewed including coarse location tracking, 

video stream analysis and inertial navigation systems (INS) 

such as accelerometers. Sensor data are typically 

communicated from sensors to servers for data processing. 

Alternatively, signal processing can be performed in mobile 

devices such as smart-phones. 

Collected sensor data are analyzed using data mining and 

machine learning techniques to build activity models and 

perform pattern recognition [10], [11]. Recognizing a 

predefined set of activities is a recognition (classification) 

task: features are extracted from the space-time information 

collected by sensors and then used for classification. Feature 

representations are used to map the data to another 
representation space with the intention of making the 

classification problem easier to solve. In most cases, a 
model of classification is used that relates the activity to 

sensor patterns. The learning of such models is usually done 

in a supervised manner (human labeling) and requires a large 

annotated datasets recorded in different settings. 

In general, activity recognition algorithms can be divided 

into two major categories [9]. The first one is based on 

supervised and unsupervised machine learning methods. 

Supervised learning requires the use of labeled data upon 

which an algorithm is trained. Unsupervised learning is 

based on unlabeled data and applies the following steps: (1) 

acquire unlabeled sensor data, (2) aggregate and transform 

them into features; (3) model data by e.g. clustering 

techniques. The second broad category exploits logical 

modeling and reasoning. The steps are the following: (1) use 

a logical formalism to explicitly define and describe a library 

of activity models, (2) aggregate and transform sensor data 

into logical terms, and (3) perform logical reasoning based 

on observed actions, which could explain the observations. 

2. SPLITTING ACTIVITY RECOGNI-

TION TASKS FOR MOBILE

COMPUTING

The review paper [1] elaborated sensors placed both 

externally or internally with respect to mobile devices. The 

research [2] focuses on activity recognition chain when 

exploiting internal sensors. An Android OS based mobile 

application was developed to study the efficiency of splitting 

activity recognition tasks between the mobile device and the 

server accounting for the trade-offs between accuracy of 

classification, signal reading rates and estimated battery 

power. The next subsection will review the specific aspects 

of mobile computing environment in application to the 

studied recognition task, while the next section describes in 

detail the classification flow and the experimental results. 

2.1. Multithreading layered mobile computing 

Here a multilayered architecture is described for 

implementing activity classification. Main idea of data 

collecting and further processing flow is illustrated in Fig. 1. 

The diagram describes the sequence of steps, starting from 

raw sensor signal acquisition to either training or recognition 

of a given signal block. 

Preliminary setup. The signal processing chain is divided 

into several layers. Before starting the signal processing 

thread, the user can manually setup some information that is 

needed in further data processing. The setup stage is mostly 

necessary to distinguish “training” modes of the application. 

For example, to improve the training process, the user can 

specify the part of his body where the mobile device is 

attached. In addition, the user specifies the signal retrieving 

duration and reading rate. There are two options to specify 

“read-rate”: a) Android OS provides four predefined rates, 

from lower to higher sampling frequency: Normal, UI, 



Game, and Fastest, and b) one can specify own rate in 
microseconds (for example, 35000mcrs correspond to 

106/35000=28.6Hz frequency). 

Main thread (Thread 1). First layer is represented by the 

main thread, which communicates with the user, so called 

“user interface” or UI thread (Fig. 2). When the user starts 

data processing, the application loads three more threads per 

sensor for data acquisition and analyzing. Therefore, for two 

sensors the application will initialize six more threads for 

simultaneous processing. All signal processing threads work 

in pairs, in a producer-consumer mode. Each pair is 

connected with one (except the 3-rd thread) data queue. Each 

data queue holds specific objects, corresponding to particular 

sensor [2]. 

There are two queues for processing: raw signals’ data 

holder queue (RSDQ) and preprocessed signals’ data holder 

queue (PSDQ). 

Raw signals collector thread (Thread 2). Thread is 

responsible for raw signals collection from a sensor of the 

mobile device. Each sensor returns a signal of a certain 

format. For example, signal from accelerometer returns 

accelerations along three axes (x, y, and z). The thread 

collects raw signals and constructs an object, which contains 

accelerations along each axis, and sample collection time 

stamp (microsecond tick). The thread sequentially stores the 

constructed objects in RSDQ. 

Signal preprocessor thread (Thread 3). The whole 

processing chain is divided into several layers. Third thread 

reads data from RSDQ. After initial specified delay the 

thread consecutively reads chunks of data, which is 

calculated by tp  /)1000( formula, where p  is the 

window length in seconds, and t is the sampling period in 

microseconds. Data preprocessing stage includes two 

operations: noise reduction and feature extraction. The 

thread constructs feature vectors and stores in the second 

queue – PSDQ. Preprocessing stage is very important, as it 

effects on further recognition accuracy. 

Preprocessed data executor thread (Thread 4). When all 

preprocessing operations are completed, the application 

stores constructed feature vector into PSDQ data structure. 

In addition, the last thread from the chain starts final data 

execution. The final thread that completes all preprocessed 

data is the classification thread. This thread works with 

PSDQ data structure. The thread works continuously and 

stops only when period duration is over and there are no 

more feature vectors available in the queues for processing. 

The feature vector processing depends on the performing 

activity behavior. Efficiencies of the following two strategies 

are compared: (a) mobile-side data processing and (b) 

server-side data processing. 

Mobile-side data processing. Mobile-side data processing 

is performed autonomously in the mobile device without 

involving external servers. Therefore, the mobile device 

saves energy due to mobile-server communication, such as 

Wi-Fi link, which is selected for the experiments. We 

conditionally divide the mechanism of acquired signals 

processing into two parts: “training” data processing 

mechanism and “classification” of unknown data. The 

mobile-based processing constraints training data sizes and 

complexity levels of classification algorithms. 

Computationally complex algorithms (SVM, HMM, etc.) are 

more feasible to implement on servers. In addition, for local 

recognition and data storage one can efficiently use SQLite 

portable mobile database and its features. SQLite supports 

multiple connections for parallel data writing and reading 

threads enabling more optimal computations of advanced 

algorithms. 

Server-side data processing. Unlike “mobile-side data 

processing” approach, the server-side processing approach 

has significant advantages in following aspects: 

 Servers usually have multiple (>4) supporting cores 

(unlike mobile device manufacturers who usually equip 

their phones with 2 or 4 cores); 

 Servers usually have at least 32GB of random access 

memory (RAM). 

Accessible physical memory size can be at least 100GB. 

Thus, the “heavy” computations related to sophisticated 

classification algorithms can be performed on the server 

side. One should also mention a drawback of server-based 

approaches related to the necessity of supporting a mobile-

server communication link, which consumes battery power. 

If this communication link is available, the extracted feature 

data can be sent to the server for further processing and 

feature vector object will be removed from smartphone 

memory. Here the processing stage depends on user 

intentions - training dataset accumulation or unknown 

activity classification. 

For both unknown feature classification approaches 

(classification on smartphone and classification on server), it 

comes out that application recognizes movement activity 

within frame periods. In both cases, the application tracks 

recognized activities, and then counts the corresponding 

labels (“standing”, “sitting”, etc.) for each type of moves and 

then displays average activity, performed during the whole 

time. Other option to display recognized activities within the 

given time period is the so called “activity chain”. In this 

case, sequential classification results that describe the same 

action are merging and result activity becomes a chain of 

series of primitive activities (for example, “standing”-

“walking”-“running”-“standing”-“sitting”). 

3. ADVANCED ALGORITHMS FOR 

ACTIVITY CLASSIFICATION BY 

MOBILE DEVICES 

Depending on the algorithm, motion-tracking signals can go 

through different preprocessing stages. For example, when 

dealing with accelerometer, the three axes can be 

individually median filtered to remove spikes as in [11]. A 

fifth order FIR filter with cut-off at .5 radians/sec was used 

instead in [16]. After filtering, the effect due to gravity can 

be subtracted [10, 12]. A third-order elliptic low pass IIR 

filter with cutoff at 0.25Hz was used to separate gravity in 

[13]. An additional preprocessing step where the mean is 

subtracted and the signal is normalized by the standard 

deviation can be seen in [14]. 

4. PERFOMANCE TESTING AND 

EFFICIENCY COMPARING 

The two most popular ways of testing these types of human 

activity recognition algorithms are leave-one-subject-out 

validation and personalized validation. In the leave-one-

subject-out validation the algorithm is tested on one subject 

but trained on the rest of the subjects in the dataset. In 

personalized validation, the algorithm is cross-validated by 

training and testing on a single subject [6], [5], and [15]. The 

results in [6], [5] seem to indicate that the performance of 

personalized systems is higher but leave-one-user-out 

validation is still important because systems that are 

previously trained on a set of subjects other than the user 



may be more convenient for deployment [8]. In other cases 

all frames to be classified are mixed and the algorithm is 

tested with folded cross-validation [5], [16], [17].  

Performance evaluation for smartphone-based methods may 

also be different from attachable accelerometer based 

methods. In cases where the purpose of the algorithm is to 

recognize activities independently of the orientation of the 

device, it may prove useful to test the algorithm with a leave-

one-orientation-in validation, which means that the 

algorithm is trained for one orientation but tested on several 

orientations as in [16]. However, these algorithms can also 

be tested by acquiring data with random orientations or 

orientations chosen by the subject and then performing 

personalized and leave-one-user-out validation with and 

without the orientation-invariant signal preprocessing to find 

out if there is any difference in performance between the 

two. 

5. CONCLUSION 

This work addresses an important direction of human 

activity recognition and processing in mobile environments. 

First, a review of the state-of-the-art is provided which is 

then followed by implementation aspects in mobile devices 

and introduction to advanced algorithms. The research area 

is rapidly developing and projects to commercialization 

judging by many products offered nowadays. Still there are 

many problems that persist on improving activity recognition 

rates, optimizing implementation techniques, and using 

universal algorithms, which are invariant to different 

placement of mobile devices. 
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Figure 1. Multithread mechanism diagram for sensor signal continuous sequences processing. 
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Figure 2. Inertial signal processing stage. a) user determines whether motion is for training or for classification, in 

case of training he specifies activity type, b) count down timer works before actual data processing starts, constructs 

necessary data structures, c) signal processing stage that uses multithreading 

 


