
Multithreaded Signal Preprocessing Approach for
Inertial Sensors of Smartphone

Sahak Kaghyan
Institute for Informatics and

Automation Problems of NAS RA,

Armenia

sahak.kaghyan@gmail.com

Hakob Sarukhanyan
Institute for Informatics and

Automation Problems of NAS RA,

Armenia

hakop@ipia.sci.am

ABSTRACT
Cell phones and other mobile devices become the part of

human culture and change activity and lifestyle patterns.

Mobile phone technology continuously evolves and

incorporates more and more sensors for enabling advanced

applications. Latest generations of smart phones incorporate

GPS and WLAN location finding modules, vision cameras,

microphones, accelerometers, temperature sensors etc. The

availability of these sensors in mass-market communication

devices creates exciting new opportunities for data mining

applications. Particularly healthcare applications exploiting

build-in sensors are very promising. This chapter reviews

different aspects of human activity recognition, including

review of state-of-the-art, implementation and algorithmic

aspects.

Keywords
Activity recognition, signal preprocessing, smartphone
sensors, mobile computing, feature extraction

1. INTRODUCTION
With the advent of miniaturized sensing technology, which

can be body-worn or integrated in mobile devices, it is now

possible to collect, store and process data on different

aspects of human physical activity. This data can enable

automated activity profiling systems to generate activity

patterns over extended periods of time for health monitoring.

Collection of activity patterns is dependent on recognition

algorithms that may efficiently interpret body-worn sensor

data.

Existing activity recognition systems are constrained by

practical limitations such as the number, location and nature

of used sensors. Other issues include ease of deployment,

maintenance, costs, and the ability to perform daily activities

unimpeded. Sensors’ outputs might vary for the same

activity across different subjects and even for the same

individual. Errors can also arise due to variability in sensor

signals caused by differences in sensor orientation,

placement, and from environmental factors such as

temperature sensitivity. Three main classes of activity

recognition are reviewed including coarse location tracking,

video stream analysis and inertial navigation systems (INS)

such as accelerometers. Sensor data are typically

communicated from sensors to servers for data processing.

Alternatively, signal processing can be performed in mobile

devices such as smart-phones.

Collected sensor data are analyzed using data mining and

machine learning techniques to build activity models and

perform pattern recognition [10], [11]. Recognizing a

predefined set of activities is a recognition (classification)

task: features are extracted from the space-time information

collected by sensors and then used for classification. Feature

representations are used to map the data to another
representation space with the intention of making the

classification problem easier to solve. In most cases, a
model of classification is used that relates the activity to

sensor patterns. The learning of such models is usually done

in a supervised manner (human labeling) and requires a large

annotated datasets recorded in different settings.

In general, activity recognition algorithms can be divided

into two major categories [9]. The first one is based on

supervised and unsupervised machine learning methods.

Supervised learning requires the use of labeled data upon

which an algorithm is trained. Unsupervised learning is

based on unlabeled data and applies the following steps: (1)

acquire unlabeled sensor data, (2) aggregate and transform

them into features; (3) model data by e.g. clustering

techniques. The second broad category exploits logical

modeling and reasoning. The steps are the following: (1) use

a logical formalism to explicitly define and describe a library

of activity models, (2) aggregate and transform sensor data

into logical terms, and (3) perform logical reasoning based

on observed actions, which could explain the observations.

2. SPLITTING ACTIVITY RECOGNI-

TION TASKS FOR MOBILE

COMPUTING

The review paper [1] elaborated sensors placed both

externally or internally with respect to mobile devices. The

research [2] focuses on activity recognition chain when

exploiting internal sensors. An Android OS based mobile

application was developed to study the efficiency of splitting

activity recognition tasks between the mobile device and the

server accounting for the trade-offs between accuracy of

classification, signal reading rates and estimated battery

power. The next subsection will review the specific aspects

of mobile computing environment in application to the

studied recognition task, while the next section describes in

detail the classification flow and the experimental results.

2.1. Multithreading layered mobile computing

Here a multilayered architecture is described for

implementing activity classification. Main idea of data

collecting and further processing flow is illustrated in Fig. 1.

The diagram describes the sequence of steps, starting from

raw sensor signal acquisition to either training or recognition

of a given signal block.

Preliminary setup. The signal processing chain is divided

into several layers. Before starting the signal processing

thread, the user can manually setup some information that is

needed in further data processing. The setup stage is mostly

necessary to distinguish “training” modes of the application.

For example, to improve the training process, the user can

specify the part of his body where the mobile device is

attached. In addition, the user specifies the signal retrieving

duration and reading rate. There are two options to specify

“read-rate”: a) Android OS provides four predefined rates,

from lower to higher sampling frequency: Normal, UI,

Game, and Fastest, and b) one can specify own rate in
microseconds (for example, 35000mcrs correspond to

106/35000=28.6Hz frequency).

Main thread (Thread 1). First layer is represented by the

main thread, which communicates with the user, so called

“user interface” or UI thread (Fig. 2). When the user starts

data processing, the application loads three more threads per

sensor for data acquisition and analyzing. Therefore, for two

sensors the application will initialize six more threads for

simultaneous processing. All signal processing threads work

in pairs, in a producer-consumer mode. Each pair is

connected with one (except the 3-rd thread) data queue. Each

data queue holds specific objects, corresponding to particular

sensor [2].

There are two queues for processing: raw signals’ data

holder queue (RSDQ) and preprocessed signals’ data holder

queue (PSDQ).

Raw signals collector thread (Thread 2). Thread is

responsible for raw signals collection from a sensor of the

mobile device. Each sensor returns a signal of a certain

format. For example, signal from accelerometer returns

accelerations along three axes (x, y, and z). The thread

collects raw signals and constructs an object, which contains

accelerations along each axis, and sample collection time

stamp (microsecond tick). The thread sequentially stores the

constructed objects in RSDQ.

Signal preprocessor thread (Thread 3). The whole

processing chain is divided into several layers. Third thread

reads data from RSDQ. After initial specified delay the

thread consecutively reads chunks of data, which is

calculated by tp  /)1000(formula, where p is the

window length in seconds, and t is the sampling period in

microseconds. Data preprocessing stage includes two

operations: noise reduction and feature extraction. The

thread constructs feature vectors and stores in the second

queue – PSDQ. Preprocessing stage is very important, as it

effects on further recognition accuracy.

Preprocessed data executor thread (Thread 4). When all

preprocessing operations are completed, the application

stores constructed feature vector into PSDQ data structure.

In addition, the last thread from the chain starts final data

execution. The final thread that completes all preprocessed

data is the classification thread. This thread works with

PSDQ data structure. The thread works continuously and

stops only when period duration is over and there are no

more feature vectors available in the queues for processing.

The feature vector processing depends on the performing

activity behavior. Efficiencies of the following two strategies

are compared: (a) mobile-side data processing and (b)

server-side data processing.

Mobile-side data processing. Mobile-side data processing

is performed autonomously in the mobile device without

involving external servers. Therefore, the mobile device

saves energy due to mobile-server communication, such as

Wi-Fi link, which is selected for the experiments. We

conditionally divide the mechanism of acquired signals

processing into two parts: “training” data processing

mechanism and “classification” of unknown data. The

mobile-based processing constraints training data sizes and

complexity levels of classification algorithms.

Computationally complex algorithms (SVM, HMM, etc.) are

more feasible to implement on servers. In addition, for local

recognition and data storage one can efficiently use SQLite

portable mobile database and its features. SQLite supports

multiple connections for parallel data writing and reading

threads enabling more optimal computations of advanced

algorithms.

Server-side data processing. Unlike “mobile-side data

processing” approach, the server-side processing approach

has significant advantages in following aspects:

 Servers usually have multiple (>4) supporting cores

(unlike mobile device manufacturers who usually equip

their phones with 2 or 4 cores);

 Servers usually have at least 32GB of random access

memory (RAM).

Accessible physical memory size can be at least 100GB.

Thus, the “heavy” computations related to sophisticated

classification algorithms can be performed on the server

side. One should also mention a drawback of server-based

approaches related to the necessity of supporting a mobile-

server communication link, which consumes battery power.

If this communication link is available, the extracted feature

data can be sent to the server for further processing and

feature vector object will be removed from smartphone

memory. Here the processing stage depends on user

intentions - training dataset accumulation or unknown

activity classification.

For both unknown feature classification approaches

(classification on smartphone and classification on server), it

comes out that application recognizes movement activity

within frame periods. In both cases, the application tracks

recognized activities, and then counts the corresponding

labels (“standing”, “sitting”, etc.) for each type of moves and

then displays average activity, performed during the whole

time. Other option to display recognized activities within the

given time period is the so called “activity chain”. In this

case, sequential classification results that describe the same

action are merging and result activity becomes a chain of

series of primitive activities (for example, “standing”-

“walking”-“running”-“standing”-“sitting”).

3. ADVANCED ALGORITHMS FOR

ACTIVITY CLASSIFICATION BY

MOBILE DEVICES

Depending on the algorithm, motion-tracking signals can go

through different preprocessing stages. For example, when

dealing with accelerometer, the three axes can be

individually median filtered to remove spikes as in [11]. A

fifth order FIR filter with cut-off at .5 radians/sec was used

instead in [16]. After filtering, the effect due to gravity can

be subtracted [10, 12]. A third-order elliptic low pass IIR

filter with cutoff at 0.25Hz was used to separate gravity in

[13]. An additional preprocessing step where the mean is

subtracted and the signal is normalized by the standard

deviation can be seen in [14].

4. PERFOMANCE TESTING AND

EFFICIENCY COMPARING

The two most popular ways of testing these types of human

activity recognition algorithms are leave-one-subject-out

validation and personalized validation. In the leave-one-

subject-out validation the algorithm is tested on one subject

but trained on the rest of the subjects in the dataset. In

personalized validation, the algorithm is cross-validated by

training and testing on a single subject [6], [5], and [15]. The

results in [6], [5] seem to indicate that the performance of

personalized systems is higher but leave-one-user-out

validation is still important because systems that are

previously trained on a set of subjects other than the user

may be more convenient for deployment [8]. In other cases

all frames to be classified are mixed and the algorithm is

tested with folded cross-validation [5], [16], [17].

Performance evaluation for smartphone-based methods may

also be different from attachable accelerometer based

methods. In cases where the purpose of the algorithm is to

recognize activities independently of the orientation of the

device, it may prove useful to test the algorithm with a leave-

one-orientation-in validation, which means that the

algorithm is trained for one orientation but tested on several

orientations as in [16]. However, these algorithms can also

be tested by acquiring data with random orientations or

orientations chosen by the subject and then performing

personalized and leave-one-user-out validation with and

without the orientation-invariant signal preprocessing to find

out if there is any difference in performance between the

two.

5. CONCLUSION

This work addresses an important direction of human

activity recognition and processing in mobile environments.

First, a review of the state-of-the-art is provided which is

then followed by implementation aspects in mobile devices

and introduction to advanced algorithms. The research area

is rapidly developing and projects to commercialization

judging by many products offered nowadays. Still there are

many problems that persist on improving activity recognition

rates, optimizing implementation techniques, and using

universal algorithms, which are invariant to different

placement of mobile devices.

REFERENCES

[1] S. Kaghyan, H. Sarukhanyan, D. Akopian, “Human

Movement Activity Classification Approaches that

use Wearable Sensors and Mobile Devices”,

IS&T/SPIE Electronic imaging symposium,

Conference on Multimedia and Mobile Devices, vol.

8667, Burlingame, CA, USA, 2013.

[2] S. Kaghyan, D. Akopian, H. Sarukhanyan, “Platform-

dependent optimization considerations for mHealth

applications”, IS&T/SPIE Electronic imaging

symposium, Proceedings of SPIE Conference on

“Mobile Devices and Multimedia: Enabling

Technologies, Algorithms, and Applications”, 2015.

[3] J.A. Morales, D. Akopian, S. Agaian, “Human

activity recognition by smartphones regardless of

device orientation”, Proceedings of SPIE Conference

on Mobile Devices and Multimedia: Enabling

Technologies, Altorithms, and Applications, 2014.

[4] M. Oner, J.A. Pulcifer-Stump, P Seeling, and T.

Kaya, “Towards the Run and Walk Activity

Classification through Step Detection – An Android

Application”, 34th Annual International Conference

of the Engineering in Medicine and Biology Society,

San Diego, 2012.

[5] N. Ravi, N. Dandekar, P. Mysore, M.L. Littman,

“Activity recognition from accelerometer data”,

Proceedings of the 17th conference on Innovative

applications of artificial intelligence - Volume 3

(IAAI'05), Bruce Porter (Ed.), Vol. 3. AAAI Press,

pp. 1541-1546, 2005.

[6] L. Bao, S. Intille, “Activity Recognition from User-

Annotated Acceleration Data. Lecture Notes

Computer Science 3001”, pp. 1-17, 2004.

[7] S. Kaghyan, H. Sarukhanyan, “Activity Recognition

Using K-Nearest Neighbor Algorithm on Smartphone

with Tri-axial Accelerometer”, International Journal

of Informatics Models and Analysis (IJIMA), ITHEA

International Scientific Society, Bulgaria, pp. 146-

156, 2012.

[8] S. Das, L. Green, B. Perez, B. Murphy, A. Perring,

“Detecting user activities using the accelerometer on

Android smartphones”, 2010.

[9] E.M. Tapia, S.S. Intille, K. Larson, “Activity

recognition in the home using simple and ubiquitous

sensors”, Pervasive Computing, Springer Berlin/

Heidelberg, pp. 158-175, 2004.

[10] C.M. Bishop, “Pattern Recognition and Machine

Learning”, Springer, New York, 2007.

[11] V.N. Vapnik, “Statistical Learning Theory”, New

York: John Wiley & Sons, 1998.

[12] L. Chen, I. Khalil, “Activity recognition:

Approaches, Practices and Trends”, Atlantis Press

Review, pp. 1-23, 2010.

[13] J.R. Kwapisz, G.M. Weiss, S.A. Moore, “Activity

Recognition using Cell Phone Accelerometers”,

SIGKDD Explor. Newsl. 12, pp. 74-82, 2010.

[14] D.M. Karantonis, M.R. Narayanan, M. Mathie, N.H.

Lovell, B.G. Celler, "Implementation of a real-time

human movement classifier using a triaxial

accelerometer for ambulatory monitoring," IEEE

transactions on Information Technology in

Biomedicine, vol.10, no.1, pp. 156-167, 2006.

[15] K. Hwang, S.-Y. Lee, "Environmental audio scene

and activity recognition through mobile-based

crowdsourcing", IEEE transactions on Consumer

Electronics, vol.58, no.2, pp. 700-705, 2012.

[16] A. Henpraserttae, S. Thiemjarus, S. Marukatat,

"Accurate Activity Recognition Using a Mobile

Phone Regardless of Device Orientation and

Location", International conference on Body Sensor

Networks (BSN) 2011, pp.41-46, 2011.

[17] V. Q. Viet, H.M. Thang, D.-J. Choi, "Balancing

Precision and Battery Drain in Activity Recognition

on Mobile Phone", IEEE 18th International

conference on Parallel and Distributed Systems

(ICPADS), pp.712-713, 2012.

Figure 1. Multithread mechanism diagram for sensor signal continuous sequences processing.

a)

b)

c)

Figure 2. Inertial signal processing stage. a) user determines whether motion is for training or for classification, in

case of training he specifies activity type, b) count down timer works before actual data processing starts, constructs

necessary data structures, c) signal processing stage that uses multithreading

