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ABSTRACT 
In this paper we describe an efficient protocol for oblivious 

evaluation of a binary alphabet Deterministic Finite 

Automata (DFA) between the DFA owner (client) and the 

input text owner (server). The protocol requires only a single 

round of client-server communication. The number of 

server-side computations is linear to the text length and does 

not depend on the size of the DFA, and the number of client-

side computations is linear to the multiplication of the 

number of the DFA states and text length, and it does not 

depend on the internal structure of the DFA. Our protocol 

uses white-box based 1-out-of-2 oblivious transfer protocol 

as a construction block. As a result, we have no public-key 

operations in our algorithm.  

Also, we have developed a test program which implements 

the protocol and this paper includes the results of 

benchmarks done for different input data. These results 

demonstrate the efficiency of the construction and confirm 

the low computational overhead of server side operations. 
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1. INTRODUCTION
Consider the following oblivious Deterministic Finite 

Automata DFA evaluation problem: the first party (client) 

has a DFA (or regular expression)   as long as the second 

party (server) has a binary text string  . Their objective is to 

check whether the string   belongs to the language 

generated by the   allowing both parties to learn the answer 

so that neither the client nor the server learned any additional 

information about the input of each other. 

This problem and its variations have numerous applications; 

lots of problems that associated with tow-party secure and 

private communication adduce this problem. One such 

example is searching a number of appearances of a specific 

DNA pattern among people of some specific group (for 

instance the Police (the server) wants to allow biogenetical 

researchers (clients) to find the number of people among the 

criminals who have a specific (featured by the researchers) 

pattern in their DNAs without providing the entire list of 

DNAs of such people, and without learning which patterns 

have been searched). Generally the secure pattern matching 

problem and its variants which have been actively discussed 

during recent years are such examples [3, 4, 5, 6, 7]. 

As in every two party communication protocol here also it is 

important to take into account the number of client-server 

communication rounds. Also depending on the real world 

application the ratio between the number of DFA states and 

the text length may be different; they both may have about 

the same size or vice versa, one of them may have a 

significantly bigger size than another. Because of these two 

factors the protocol is designed to run in a single client-

server communication round, to do a small number of 

server side computations and to use no asymmetric 

cryptography operations. 

Our protocol is similar to the “Efficient Protocol for 

Oblivious DFA Evaluation” construction described in [1]. 

But unlike it, we do not use any public-key operations in our 

algorithm, we use white-box based 1-out-of-2 oblivious 

transfer protocol (later OT) [2] as a construction block. 

2. THE PROTOCOL
Notations: We assume that the client has a DFA 

 (  {   }        ) with binary {   } input alphabet; set of 

states  ; transitions matrix   of size | |   , where 

 [   ]    is the state where the DFA will go if it sees the 

letter   being in state  ; initial state    and set of accepting 

(or final) states  , while the server has   – bit string

  {   } . Saying the result of evaluation of   on the string 

  (or simply  ( )) we mean the Boolean value which is 1 

(or true) if the state 

 [  [ [    [ ]]  [ ]]   [ ]] 

is an accepting state (i.e., belongs to  ) and 0 (or false) 

otherwise. By   we denote the security parameter of the 

protocol. The pipe-sign | is used to denote the concatenation 

of binary strings and the circled plus sign   is used to 

denote the XOR operation. By ⌈ ⌉ we denote the ceiling of a 

real number  . 

Brief description of the protocol: The main steps of the 

protocol are the following: 

a) Client: Create a special evaluation matrix (DFA matrix)

   of size   | |    intended for evaluation of   on  -

bit strings. 

b) Client: Create garbled DFA matrix     by permuting

each row of the    matrix, then encrypting each cell of

the matrix using one time pad. As a result, to calculate

 ( ) it will be enough for the server to have the garbled 

DFA matrix     and a key for each position        

of the string   corresponding to the letter of that position.  

c) Server: For each letter of string   create an OT query 

token [2] and send them all along with the OT 

initialization data to the client. 



 
 

d) Client: For each OT query token create an OT response 

token for the corresponding key [2] and send them 

together with the garbled DFA matrix     to the Server. 

e) Server: From OT response tokens invoke the keys for 

positions of the string  , then compute  ( ) using those 

keys and     garbled DFA matrix. 

Now let us look at these steps in more detail. 

Step a): For evaluating   on any  -bit string we create a 

DFA matrix    of size   | |    such that for each state 

  and letter     [     ]   [   ]            and 

  [     ]    if  [   ] is a final state and   [     ]    

if  [   ] is not final. It is easy to see that in such notation 

 ( ) is equal to 

  [     [    [      [ ]]  [ ]]   [ ]] 

Figure 1 (a, b) below illustrates an example of DFA with its 

DFA matrix. 

Step b): It is worth to note that for any permutation     

  the DFA   is equal (accepts the same set of strings) to the 

DFA   (  {   }     [  ]   ) where for each state   and 

letter     [ [ ]  ]   [ [   ]] and    {     [ ]   }. 

The first stage of DFA matrix garbling is based on this fact. 

Namely, we first create   random permutations of the DFA 

states   and fill by them   rows of an   | | permutations 

matrix    , then we create permuted DFA matrix     such 

that for each state   and letter   

   [     [   ]  ]     [      [     ]] 

for each  ;         and 

   [     [   ]  ]    [     ] 

Figure 1 (c) below illustrates an example of a     matrix. 

Here it is not hard to observe that in terms of     matrix 

 ( ) is equal to 

   [      [     [     [    ]  [ ]]  [ ]]   [ ]]
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For the second stage of DFA matrix garbling we generate an 

    size matrix of random  -bit keys   and an (   )  

| | size matrix of   -bit pads    ; where for each state  , 

   [   ] is a random   -bit string for each         and 

   [     ]      ⏟  
  

. By    we denote   ⌈    | |⌉. 

For garbling the permuted DFA matrix we also need some 

CSPRNG (cryptographically secure pseudo-random number 

generator)     {   } 
 
 {   }  . Since the     receives 

a   -bit string as an input and returns   -bit string as an 

output by    (   ) we denote the first  -bits of    ( ) 

and by    (   ) we denote the second  -bits of    ( ). 

Having all this, we create the garbled DFA matrix     such 

that 

   [     ]  (   [     ] |    [       [     ]])

  [   ]     (   [   ]  ) 

for each        , letter   and state  . 

Step c): Having garbled DFA matrix     and  [   [ ]] for 

each         the server will be able to calculate  ( ) 

(we will see that in step e). Hence, here for each letter  [ ] 

of its input string the server generates an OT query token 

       [ ] and along with OT initialization info        

sends them to the client. For the details of OT initialization 

info and OT query token generation see [2]. 

Step d): For each OT query the token        [ ] (    

 ) the client, using OT initialization info        generates an 

OT response token           [ ] which carries sufficient 

info to invoke  [   [ ]] (see [2]). Then the client sends 

those response tokens, garbled DFA matrix    ,    [    ] 

and    [     [    ]] to the server. 

Step e): At this step first the server for each         

invokes  [   [ ]]  key stored in the corresponding response 

token           [ ] (see [2]). Then having the keys, garbled 

DFA matrix    ,    [    ] and    [     [    ]] ,it 

runs the following algorithm to calculate  ( ): 

Evaluation of garbled DFA matrix 

                 [    ]; 
            [              ]; 
for each row     to   do 

              |            [                [ ]]   

 [   [ ]]     (         [ ])  

end for 

return              

 

3. PROTOCOL SECURITY  
In the protocol we use a white-box based 1-out-of-2 OT 

protocol. Such OT protocol is considered to be secure if the 

underlying white-box encryption schema is secure. In our 

case we use white-box encryption schema based on 

SAFER+ encryption algorithm. White-box scheme can be 

considered secure if no computationally bounded adversary 

is able to extract the master encryption key from the white-

box encryption tables and no computationally bounded 

adversary is able to make decryption functionality with the 

help of only white-box encryption tables. So the white-box 

scheme is considered to be secure if it is secure against key-

recovery and reverse-engineering attacks.  

Full-security for a two-party computation is defined by 

requiring indistinguishability (either perfect, statistical or 

computational) between a real execution of the protocol and 

an ideal execution in which there is a TTP (trusted third 

party) who receives the parties input, evaluates the function 

and outputs the results to them. Privacy against malicious 

adversaries guarantees that a corrupted party will not learn 

any information about the honest parties input. However, 

this does not guarantee that the joint output of the parties in 

the real world is simulatable in an ideal world. 

Readers can refer to [1] for more detailed discussion on 

these two levels of security. 

Summing up all definitions above we see that according to 

the theorem 1 from [1] our protocol is fully-secure when only 

one party is malicious and it is private when both parties are 

malicious. 

 

4. IMPLEMENTATION AND 

BENCHMARKS 
Implementation: We implemented the protocol and a test 

application for it in C++.  The implementation of the 

protocol is parameterized by the security parameter   and by 

the CSPRNG    . The test application acts as both a client 

and a server. As a server, it receives a text string as an input, 

and as a client, its input is a regular expression which it 

converts to the equivalent DFA, first using Thompson’s 

construction algorithm [8] to create NDFA equivalent to the 

regular expression and then using subset construction 

algorithm [9] to convert the NDFA to the DFA. After all, the 

test application runs the steps a) – e) of the protocol and 

calculates the result of the evaluation of the DFA on the text 

string. Besides the result of the DFA evaluation, it prints out 

the time spent for different parts of computations.  

Benchmarks: From the description of the protocol it is clear 

that the number of computations done by the algorithm 

depends only on the security parameter  , the number of the 

DFA states and the length of the text string. Apart from that, 

in our algorithm we have generation of random pads and 

keys, as well as usage of CSPRNG, and, depending on the 

approach used for generation of random pads and keys and 

chosen CSPRNG the efficiency of the algorithm may differ 

for the same input data ( ,   and  ). We did our benchmarks 

on a 64-bit Windows 7 PC with Intel® Core™ 2 Quad 

Q6600 2.4 GHz processor and 4GB RAM, using SHA-256 

as a {   } 
 
 {   }   CSPRNG and C++ standard library’s 

rand() function for random pad/key generation. The security 

parameter   was 128. The method of garbled DFA matrix 

construction clearly shows and our benchmarks confirmed 

that the number of operations hence spent time for garbled 

DFA matrix creation is proportional to the multiplication of 

the number of the DFA states and text length (| |   ). The 

first table shows performance of garbled DFA matrix 

generation of our implementation on inputs of different 

sizes. The table contains averaged results from 10 runs for 

each pair of inputs. 

 

 



 
 

Table 1. Garbled DFA creation time (sec): 
 

            
 

  | | 
10 100 1000 10000 100000 

10 <0.001 0.002 0.017 0.17 1.7 

100 0.002 0.017 0.17 1.7 17 

1000 0.017 0.17 1.7 17 >100 

10000 0.17 1.7 17 >100 >100 

100000 1.7 17 >100 >100 >100 

1000000 17 >100 >100 >100 >100 

 

And the second table shows the performance of the OT 

phase of the protocol and performance of the garbled DFA 

matrix evaluation by the server. 

 

Table 2. Time spent in OT phase (sec): 

 

  

OT query 

generation and 

response 

extraction 

(server) 

OT response 

generation 

(client) 

Garbled DFA 

evaluation 

(server) 

10 <0.001 <0.001 <0.001 

100 0.002 <0.001 <0.001 

1000 0.021 0.007 <0.001 

10000 0.21 0.07 0.002 

100000 2.1 0.7 0.02 

1000000 21 7 0.2 

 

The table shows only the dependency of efficiencies of the 

operations from the length of the server’s input string  , 

since the number of OT queries / responses and the number 

of steps for garbled DFA matrix evaluation is equal to   and 

does not depend on structure of DFA. 

All these results show that the described protocol is usable 

for real applications. 

 

5. CONCLUSION  
Unlike other protocols for oblivious DFA evaluation 

published in recent years [1, 3, 4, 6, 10, 11], our protocol is 

totally free of public-key operations, and it makes it 

somewhat unique among others. Table 3 below illustrates 

the complexities of rounds, client and server computations 

and network communication bandwidth usage of our and 

other recent protocols. 

It is also worth to note that the protocol described above 

allows both parties to learn only  ( ), but in some 

applications it may be inconvenient or insufficient. In [1] it 

is shown that for each of the following problems it is 

possible to solve them after modifying the protocol a little, 

and that those modifications have no security leakage: 

a) The client wants to hide the result  ( ) from the server. 

b) The client or both parties want to learn whether   has 

substring   such that  ( )   . 

c) The client or both parties want to learn all positions of   

from where starts a substring   such that  ( )   . 

d) The client or both parties want to learn the number of 

positions of   from where starts a substring   such that 

 ( )   .

Table 3. Complexity of protocols 

 

 

Round 

Complexity 

Client Computations Server Computations Network 

Communication 

Bandwidth 
Asymmetric Symmetric Asymmetric Symmetric 

Troncoso [3]  ( )  ( | |) None  ( | |)  ( | |)  ( | | ) 

Frikken [4] 2  (  | |)  ( | |)  (  | |)  ( | |)  ( | | ) 

Gennaro [6]  (   {| |  })  ( | |) None  ( | |) None  ( | | ) 

Yao [10] 1  ( )  ( | |    | |)  ( )  ( | |    | |)  (   ) 

Ishai [11] 1  ( ) None  ( | |) None  ( | | ) 

Mohassel [1] 1  ( )  ( )  ( )  ( | |)  ( | | ) 

This Protocol 1 None  ( | |) None  ( )  ( | | ) 
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