
Efficient Secure Pattern Search Algorithm

Gurgen, Khachatryan

American University of Armenia

Yerevan, Armenia

e-mail: gurgenkh@aua.am

Mihran, Hovsepyan

Russian Armenian University

Yerevan, Armenia

e-mail: hovsepyan.mihran@gmail.com

Aram, Jivanyan

American University of Armenia

Yerevan, Armenia

e-mail: ajivanyan@aua.am

ABSTRACT
In this paper we describe an efficient protocol for oblivious

evaluation of a binary alphabet Deterministic Finite

Automata (DFA) between the DFA owner (client) and the

input text owner (server). The protocol requires only a single

round of client-server communication. The number of

server-side computations is linear to the text length and does

not depend on the size of the DFA, and the number of client-

side computations is linear to the multiplication of the

number of the DFA states and text length, and it does not

depend on the internal structure of the DFA. Our protocol

uses white-box based 1-out-of-2 oblivious transfer protocol

as a construction block. As a result, we have no public-key

operations in our algorithm.

Also, we have developed a test program which implements

the protocol and this paper includes the results of

benchmarks done for different input data. These results

demonstrate the efficiency of the construction and confirm

the low computational overhead of server side operations.

Keywords
cryptography, secure function evaluation, white-box,

oblivious transfer

1. INTRODUCTION
Consider the following oblivious Deterministic Finite

Automata DFA evaluation problem: the first party (client)

has a DFA (or regular expression) as long as the second

party (server) has a binary text string . Their objective is to

check whether the string belongs to the language

generated by the allowing both parties to learn the answer

so that neither the client nor the server learned any additional

information about the input of each other.

This problem and its variations have numerous applications;

lots of problems that associated with tow-party secure and

private communication adduce this problem. One such

example is searching a number of appearances of a specific

DNA pattern among people of some specific group (for

instance the Police (the server) wants to allow biogenetical

researchers (clients) to find the number of people among the

criminals who have a specific (featured by the researchers)

pattern in their DNAs without providing the entire list of

DNAs of such people, and without learning which patterns

have been searched). Generally the secure pattern matching

problem and its variants which have been actively discussed

during recent years are such examples [3, 4, 5, 6, 7].

As in every two party communication protocol here also it is

important to take into account the number of client-server

communication rounds. Also depending on the real world

application the ratio between the number of DFA states and

the text length may be different; they both may have about

the same size or vice versa, one of them may have a

significantly bigger size than another. Because of these two

factors the protocol is designed to run in a single client-

server communication round, to do a small number of

server side computations and to use no asymmetric

cryptography operations.

Our protocol is similar to the “Efficient Protocol for

Oblivious DFA Evaluation” construction described in [1].

But unlike it, we do not use any public-key operations in our

algorithm, we use white-box based 1-out-of-2 oblivious

transfer protocol (later OT) [2] as a construction block.

2. THE PROTOCOL
Notations: We assume that the client has a DFA

 ({ }) with binary { } input alphabet; set of

states ; transitions matrix of size | | , where

 [] is the state where the DFA will go if it sees the

letter being in state ; initial state and set of accepting

(or final) states , while the server has – bit string

 { } . Saying the result of evaluation of on the string

 (or simply ()) we mean the Boolean value which is 1

(or true) if the state

 [[[[]] []] []]

is an accepting state (i.e., belongs to) and 0 (or false)

otherwise. By we denote the security parameter of the

protocol. The pipe-sign | is used to denote the concatenation

of binary strings and the circled plus sign is used to

denote the XOR operation. By ⌈ ⌉ we denote the ceiling of a

real number .

Brief description of the protocol: The main steps of the

protocol are the following:

a) Client: Create a special evaluation matrix (DFA matrix)

 of size | | intended for evaluation of on -

bit strings.

b) Client: Create garbled DFA matrix by permuting

each row of the matrix, then encrypting each cell of

the matrix using one time pad. As a result, to calculate

 () it will be enough for the server to have the garbled

DFA matrix and a key for each position

of the string corresponding to the letter of that position.

c) Server: For each letter of string create an OT query

token [2] and send them all along with the OT

initialization data to the client.

d) Client: For each OT query token create an OT response

token for the corresponding key [2] and send them

together with the garbled DFA matrix to the Server.

e) Server: From OT response tokens invoke the keys for

positions of the string , then compute () using those

keys and garbled DFA matrix.

Now let us look at these steps in more detail.

Step a): For evaluating on any -bit string we create a

DFA matrix of size | | such that for each state

 and letter [] [] and

 [] if [] is a final state and []

if [] is not final. It is easy to see that in such notation

 () is equal to

 [[[[]] []] []]

Figure 1 (a, b) below illustrates an example of DFA with its

DFA matrix.

Step b): It is worth to note that for any permutation

 the DFA is equal (accepts the same set of strings) to the

DFA ({ } []) where for each state and

letter [[]] [[]] and { [] }.

The first stage of DFA matrix garbling is based on this fact.

Namely, we first create random permutations of the DFA

states and fill by them rows of an | | permutations

matrix , then we create permuted DFA matrix such

that for each state and letter

 [[]] [[]]

for each ; and

 [[]] []

Figure 1 (c) below illustrates an example of a matrix.

Here it is not hard to observe that in terms of matrix

 () is equal to

 [[[[] []] []] []]

…

…

…
Accepting State

Non-Accepting

State
Start

0 1

1

0

1

2

n

n-1

(0, 0) (1, 0)

(2, 3) (5, 4)

(2, 3) (5, 4)

(2, 3) (5, 4)

1 2 |Q| …

…

…

…

…

…

…

…

…

Start

Accepted

.

.

.

.

.

.

(b) (DFA Matrix of) (a) A general DFA

Figure 1: DFA , DFA matrix , Permuted DFA matrix

1

2

n

n-1

Start

Accepted

.

.

.

.

.

.

(c) Permuted DFA Matrix

…

…

…

…

 []
(0, 0)

 []
(, …)

…

 | |
…

…

…

…

 | |
…

 | |
…

 | |
…

 []

(, …)

 []
(, …)

 []
(1, 0)

 []
(…, …)

 []
(…, …)

 []
(…, …)

For the second stage of DFA matrix garbling we generate an

 size matrix of random -bit keys and an ()

| | size matrix of -bit pads ; where for each state ,

 [] is a random -bit string for each and

 [] ⏟

. By we denote ⌈ | |⌉.

For garbling the permuted DFA matrix we also need some

CSPRNG (cryptographically secure pseudo-random number

generator) { }

 { } . Since the receives

a -bit string as an input and returns -bit string as an

output by () we denote the first -bits of ()

and by () we denote the second -bits of ().

Having all this, we create the garbled DFA matrix such

that

 [] ([] | [[]])

 [] ([])

for each , letter and state .

Step c): Having garbled DFA matrix and [[]] for

each the server will be able to calculate ()

(we will see that in step e). Hence, here for each letter []

of its input string the server generates an OT query token

 [] and along with OT initialization info

sends them to the client. For the details of OT initialization

info and OT query token generation see [2].

Step d): For each OT query the token [] (

) the client, using OT initialization info generates an

OT response token [] which carries sufficient

info to invoke [[]] (see [2]). Then the client sends

those response tokens, garbled DFA matrix , []

and [[]] to the server.

Step e): At this step first the server for each

invokes [[]] key stored in the corresponding response

token [] (see [2]). Then having the keys, garbled

DFA matrix , [] and [[]] ,it

runs the following algorithm to calculate ():

Evaluation of garbled DFA matrix

 [];
 [];
for each row to do

 | [[]]

 [[]] ([])

end for

return

3. PROTOCOL SECURITY
In the protocol we use a white-box based 1-out-of-2 OT

protocol. Such OT protocol is considered to be secure if the

underlying white-box encryption schema is secure. In our

case we use white-box encryption schema based on

SAFER+ encryption algorithm. White-box scheme can be

considered secure if no computationally bounded adversary

is able to extract the master encryption key from the white-

box encryption tables and no computationally bounded

adversary is able to make decryption functionality with the

help of only white-box encryption tables. So the white-box

scheme is considered to be secure if it is secure against key-

recovery and reverse-engineering attacks.

Full-security for a two-party computation is defined by

requiring indistinguishability (either perfect, statistical or

computational) between a real execution of the protocol and

an ideal execution in which there is a TTP (trusted third

party) who receives the parties input, evaluates the function

and outputs the results to them. Privacy against malicious

adversaries guarantees that a corrupted party will not learn

any information about the honest parties input. However,

this does not guarantee that the joint output of the parties in

the real world is simulatable in an ideal world.

Readers can refer to [1] for more detailed discussion on

these two levels of security.

Summing up all definitions above we see that according to

the theorem 1 from [1] our protocol is fully-secure when only

one party is malicious and it is private when both parties are

malicious.

4. IMPLEMENTATION AND

BENCHMARKS
Implementation: We implemented the protocol and a test

application for it in C++. The implementation of the

protocol is parameterized by the security parameter and by

the CSPRNG . The test application acts as both a client

and a server. As a server, it receives a text string as an input,

and as a client, its input is a regular expression which it

converts to the equivalent DFA, first using Thompson’s

construction algorithm [8] to create NDFA equivalent to the

regular expression and then using subset construction

algorithm [9] to convert the NDFA to the DFA. After all, the

test application runs the steps a) – e) of the protocol and

calculates the result of the evaluation of the DFA on the text

string. Besides the result of the DFA evaluation, it prints out

the time spent for different parts of computations.

Benchmarks: From the description of the protocol it is clear

that the number of computations done by the algorithm

depends only on the security parameter , the number of the

DFA states and the length of the text string. Apart from that,

in our algorithm we have generation of random pads and

keys, as well as usage of CSPRNG, and, depending on the

approach used for generation of random pads and keys and

chosen CSPRNG the efficiency of the algorithm may differ

for the same input data (, and). We did our benchmarks

on a 64-bit Windows 7 PC with Intel® Core™ 2 Quad

Q6600 2.4 GHz processor and 4GB RAM, using SHA-256

as a { }

 { } CSPRNG and C++ standard library’s

rand() function for random pad/key generation. The security

parameter was 128. The method of garbled DFA matrix

construction clearly shows and our benchmarks confirmed

that the number of operations hence spent time for garbled

DFA matrix creation is proportional to the multiplication of

the number of the DFA states and text length (| |). The

first table shows performance of garbled DFA matrix

generation of our implementation on inputs of different

sizes. The table contains averaged results from 10 runs for

each pair of inputs.

Table 1. Garbled DFA creation time (sec):

 | |
10 100 1000 10000 100000

10 <0.001 0.002 0.017 0.17 1.7

100 0.002 0.017 0.17 1.7 17

1000 0.017 0.17 1.7 17 >100

10000 0.17 1.7 17 >100 >100

100000 1.7 17 >100 >100 >100

1000000 17 >100 >100 >100 >100

And the second table shows the performance of the OT

phase of the protocol and performance of the garbled DFA

matrix evaluation by the server.

Table 2. Time spent in OT phase (sec):

OT query

generation and

response

extraction

(server)

OT response

generation

(client)

Garbled DFA

evaluation

(server)

10 <0.001 <0.001 <0.001

100 0.002 <0.001 <0.001

1000 0.021 0.007 <0.001

10000 0.21 0.07 0.002

100000 2.1 0.7 0.02

1000000 21 7 0.2

The table shows only the dependency of efficiencies of the

operations from the length of the server’s input string ,

since the number of OT queries / responses and the number

of steps for garbled DFA matrix evaluation is equal to and

does not depend on structure of DFA.

All these results show that the described protocol is usable

for real applications.

5. CONCLUSION
Unlike other protocols for oblivious DFA evaluation

published in recent years [1, 3, 4, 6, 10, 11], our protocol is

totally free of public-key operations, and it makes it

somewhat unique among others. Table 3 below illustrates

the complexities of rounds, client and server computations

and network communication bandwidth usage of our and

other recent protocols.

It is also worth to note that the protocol described above

allows both parties to learn only (), but in some

applications it may be inconvenient or insufficient. In [1] it

is shown that for each of the following problems it is

possible to solve them after modifying the protocol a little,

and that those modifications have no security leakage:

a) The client wants to hide the result () from the server.

b) The client or both parties want to learn whether has

substring such that () .

c) The client or both parties want to learn all positions of

from where starts a substring such that () .

d) The client or both parties want to learn the number of

positions of from where starts a substring such that

 () .

Table 3. Complexity of protocols

Round

Complexity

Client Computations Server Computations Network

Communication

Bandwidth
Asymmetric Symmetric Asymmetric Symmetric

Troncoso [3] () (| |) None (| |) (| |) (| |)

Frikken [4] 2 (| |) (| |) (| |) (| |) (| |)

Gennaro [6] ({| | }) (| |) None (| |) None (| |)

Yao [10] 1 () (| | | |) () (| | | |) ()

Ishai [11] 1 () None (| |) None (| |)

Mohassel [1] 1 () () () (| |) (| |)

This Protocol 1 None (| |) None () (| |)

REFERENCES
[1] P. Mohassel, S. Niksefat, S. Sadeghian and B.

Sadeghiyan. An Efficient Protocol for Oblivious DFA

Evaluation and Applications. In Proceedings of

Cryptographers' Track at the RSA Conference, pages

398-415, 2012.

[2] G. Khachatryan, A. Jivanyan. Efficient Oblivious

Transfer Protocols based on White-Box Cryptography,

Personal Communications.

[3] J.R. Troncoso-Pastoriza, S. Katzenbeisser, and M.

Celik. Privacy preserving error resilient DNA

searching through oblivious automata. In Proceedings

of the 14th ACM conference on Computer and

communications security, pages 519–528. ACM, 2007.

[4] K. Frikken. Practical private DNA string searching and

matching through efficient oblivious automata

evaluation. Data and Applications Security XXIII,

pages 81–94, 2009.

[5] J. Katz and L. Malka. Secure text processing with

applications to private DNA matching. In Proceedings

of the 17th ACM conference on Computer and

communications security, pages 485–492. ACM, 2010.

[6] R. Gennaro, C. Hazay, and J. Sorensen. Text search

protocols with simulation based security. Public Key

Cryptography–PKC 2010, pages 332–350, 2010.

[7] C. Hazay and T. Toft. Computationally secure pattern

matching in the presence of malicious adversaries.

Advances in Cryptology-ASIACRYPT 2010, pages

195–212, 2010.

[8] K. Thompson. Programming Techniques: Regular

expression search algorithm. Communications of the

ACM 11 (6), pages 419–422, 1968.

[9] S. Michael. Introduction to the Theory of

Computation. Theorem 1.19, section 1.2, page 55.

ISBN 0-534-94728-X.

[10] A.C. Yao. Protocols for secure computations. In

Proceedings of the 23rd Annual Symposium on

Foundations of Computer Science, pages 160–164,

Citeseer, 1982.

[11] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank.

Extending oblivious transfers efficiently. Advances in

Cryptology-CRYPTO 2003, pages 145–161, 2003.

http://en.wikipedia.org/wiki/Michael_Sipser
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-534-94728-X

