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ABSTRACT 
The article deals with methods of fuzzy classification of 
observations and means of dimension reducing of their cha-
racteristics. 
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1. INTRODUCTION
The task of the classification is rating the observations de-
scribed with a set  of attributes as one of the known classes.  
The method of fuzzy classification understandable to the 
specialist of a certain application domain is discussed. The 
classification method is a fuzzy rule base, where every rule 
is the expression of the cause-effect pattern relating the ob-
servation as one of the known classes expressed with linguis-
tic variables.  The methods of attribute space dimensionality 
reducing and their influence on the accuracy of recognition 
and the speed of problem solving by giving an example from 
the archive of UCI Machine Learning Repository [1] used 
for the empiric algorithm analysis of MATLAB machine 
learning are considered.     

2. FUZZY CLASSIFIER
The task of the classification is object rating specified with 
an informative attribute vectorX=(x1,x2,…xn) , to one of the 
beforehand defined classes {d1,d2,…dm} i.e. carrying out the 
representation of the following view:  

The classification on the base of the fuzzy deduction [2] 
takes  place  in  the  base  of  fuzzy  rules  as  follows:

= , = , j=1,…,m .
The grades of membership of the classification of the object 
having informative attributes specified with the vector 
X*=(x1

*,x2
*,…,xn

*), to the classes dj from  the  rulebase  are  
defined by the formulae: 

( ) = ( ) j=1,…,m, where ( ) -
operations OR (AND). More often for the operation OR the 
maximum finding is used, for the operation AND the mini-
mum finding is used.  
As a solution the class with the maximum grade of member-
ship is chosen: 
Y*=argmax(µd1(X*), d2(X*),…,µdn(X*))  
       (d1,d2,…,dm) 

In MATLAB system there are 3 functions for the fuzzy con-
clusion system construction according to a given learning 
sample containing a matrix of the observation input 
attributes by some classed and corresponding values of the 

class numbers. The distinction of these functions is the way 
the fuzzy inference system (FIS) is constructed.  
 GENFIS1 function generates the FIS of the Sugeno type, the 
number of input quantity terms and their functions of the 
membership are chosen by the user. The amount of know-
ledge base rules is defined as a product of term power of 
input variables.  
 GENFIS2 function also generates the FIS of the Sugeno 
type, preliminarily using the algorithm of subtractive cluster-
ing for the observation matrix division into the classes ac-
cording to their proximity in the attribute space.  Automati-
cally the Gaussian function of the membership is chosen. 
The number of rules of the knowledge base coincides with 
the number of classes defining the algorithm of the subtrac-
tive classification.  
GENFIS3 function generates the FIS of the type (Mamdani 
or Sugeno), chosen by the user, preliminarily utilizing the 
algorithm of the fuzzy clustering for the division of the ob-
servation matrix into classes. The Gaussian function of the 
membership is also chosen. The amount of the rules of 
knowledge base concurs with the number of classes defining 
the algorithm of fuzzy classification.   
The FIS, generated by each function, does not reflect the 
patterns represented by the data between the input and out-
put.  It is an initial system for the teaching by means of the 
ANFIS  function,  as  a  result,  the  patterns  given  in  the  data  
will be taken into account in the parameters.  
Having a great number of input variables and rules, accor-
dingly, considerable time for the FIS generation can be spent 
as well as its training.  
Therefore, the ways of attribute space dimensionality reduc-
ing without loss of self-descriptiveness are considered. 

3. THE METHODS OF ATTRIBUTE
SPACE DIMENSIONALITY REDUCING  

In many cases the determinant   for or against the deletion of 
the attribute is its relevance. In practice, the relevance of the 
attributes is defined, all attributes, the relevance of which is 
lower than the preset threshold, are excluded.  

The analytical model constructed on the base of the reduced 
attribute ensemble should become easier for processing, 
realization and understanding than the model constructed on 
the initial ensemble.  
3.1. The method of principal components  
Let the matrix of variables X equal the dimensionality of 
(I×J), where I is the number of lines, and J – the number of 
independent variables (columns), which are a lot (J>>1), as a 
rule. The essence of the method of principal components is 
considerable lowering of data dimensionality. The initial 
matrix  X  is  replaced  with  two  other  matrices  T  and  P,  the  
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dimensionality of which, A, is less than the number of col-
umns J of the initial matrix X. 
The second dimensionality is when the number of lines I is 
remained. If the dimensionality A is correctly chosen, the 
matrix T carries as much information as it was in the matrix 
X.  
In the method of principal components new formal variables 
ta (a=1,…A) are used being a linear combination of the ini-
tial variables of  xj (j=1,…J).  

ta=pa1x1+..+paJxJ 
 
With  the  help  of  these  new  variables  the  matrix  X  is  the  
product of two matrices T and P. 

= + = +  

The method of principal components is closely connected 
with another singular value expansion. In the last case the 
initial matrix X is expanded into the product of the three 
matrices X=USVt. 
Here U is a matrix formed with orthonormalized eigen vec-
tors ur the  matrix  of  XXt, corresponding values lr; XXtur = 
lrur; 
V is a matrix formed with orthonormalized eigen vectors vr, 
the matrices of XtX; XtXvr = lrvr;  
S is a positively defined diagonal matrix, the elements of 
which  are  1 ... R 0 equaling the square roots of proper 
values lr 

=  

After the construction of the principle components (usually 
they locate descending) the matrix of observations in the 
coordinates of two first principle components is formed. As a 
rule, they are enough for the model self-descriptiveness sav-
ing.  
 
3.2. Factor analysis 
In the model of the factor analysis the dimensioned variables 
depend on less number of unobserved (latent) factors.   
It is supposed that each variable depends on the linear com-
bination of the factors, the coefficients of this linear combi-
nation are called loading.   
The model of a simple factor analysis can be presented as 
follows: 

X= f+e, 
where X is a vector of observations of a multidimensional 
random value,  
  is a matrix of loading of simple factors,  
 is a vector of average attribute values of a a multidimen-

sional random value, X={X1,X2,…,Xd} 
f is a vector  of mutually independent standardized factors, 
e is a vector of independent specific factors.   
The  vector  of   the  values  of   a  multidimensional  random  
value equals X={X1,X2,…,Xd}, where Xi  is the i-th attribute 
of a  multidimensional random value.  
The dimension of the matrix  equals d x m, where d is the 
dimensionality of a multidimensional random value, m is the 
number  of  simple  factors.  The  matrix  element  i,j is called 
the loading of the  j-th factor to  the  i-th variable. 
The number of elements of the vectors , f and e equals d.  
The number of simple factors f should be less than the num-
ber of attributes of a multidimensional random value X. This 
makes it possible to reduce the task dimension from d to m.  
In a simple factor analysis it is assumed that simple factors 
are mutually independent and their variance equals  a unit, 
the specific factors ej are  independent  from  any   fi, where 
i=1…m, j=1…d. The most possible number of simple factors 
d is defined with the inequality (d+m) (d-m)2     (1) 

The factor analysis in MATLAB makes it possible to calcu-
late the matrix of the loading.  
As the results show, the loading, calculated with the factors, 
which were not taken with rotating, have a complex struc-
ture.  The aim of the factor rotation   consists in finding the 
parameters, when each attribute has only several heavy 
loads. This can often make simpler the interpretation of what 
the factors are.   
If one considers each line of the loading matrix as the coor-
dinates of the point in the m-dimensional space, then each 
factor conforms to the axis.  
The factor rotation is equivalent to the rotation of the axes 
and the calculation of new loads in a new coordinate frame. 
Some methods keep orthogonal axis, whereas others are 
oblique-angled, changing the angle between them, what is 
more next-generation.   
Finally, it is possible to determine the values of a multidi-
mensional random value F according to the calculated load-
ing matrix. The lines of the matrix F fit the observations, the 
columns conform the factors of a multidimensional random 
value. 
 
4. MODEL EXPERIMENTS  
 
The experiments were carried out with 3 samplings from the 
archive of UCI Machine Learning Repository. 

1. Survival datum (306 copies, 2 classes, 3 attributes) 
The sampling contains the data about the survival of the 
patients, who have been operated against the cancer of 
mammary gland. The input attributes are: 

1. The age of the patient during operation  
2. The year of the operation  
3. The number of positive axillary nodes found  

The classifying indication is: 
The  status  of  survival  (1  –  a  patient  lived  5  years  or  more  
after the operation; 2 – a patient died within a 5 year period). 

2. Birth rate (100 copies, 2 classes, 9 attributes) 
100 volunteers gave their sperm, which was analyzed ac-
cording to the criteria of World Health Organization in 2010.  
The concentration of spermatozoa is connected with social 
and demographic datum, environment factors, level of health 
and habits.    
The input attributes are: 

1. Season  
2. Age during the test  
3. Infectious diseases (chickenpox, measles, epidemic 

parotiditis, poliomyelitis) 
4. Serious injury  
5. Operative intervention 
6. Recently high temperature 
7. The frequency of alcohol consumption  
8. Smoking habit 
9. The number of hours spent in the  sitting position  

The classifying indication is: 
The normal or altered diagnostics  

3. Glass types (192 copies, 4 classes, 9 attributes), de-
fined in the terms of oxide content.  
The input attributes are: 

1. indexofrefraction 
2. sodium content  
3. magnesium content 
4. aluminum content 
5. silicon content 
6. potassium content 
7. calcium content 
8. barium content 
9. iron, Fecontent 

The classifying indication is: glass type  



Table 1 GENFIS1 Use 
 
 
 
 
 

Table 2 GENFIS2 Use 
 
 
 
 
 

Table 3 GENFIS3 Use 

 
 
All samplings were divided into two parts: training and mon-
itoring with approximately equal number of observations in 
each class.  On the basis of the training samplings the sys-
tems of the fuzzy output were created with the help of gen-
fis1, genfis2, genfis3 functions and adapted with anfis func-
tion. After that the values of the output variables for the cop-
ies of the training and monitoring samplings were calculated. 
The results of the calculations were compared with actual 
values of the classifying attribute.  
At the next step the space of the input attributes was reduced 
according to the method of principal components and with 
the help of the factor analysis.  
The matrices of the attributes were generated in the coordi-
nates of two maximum principle components and in the 
coordinates of the factors, the number of which was chosen 
according to the inequality (1).  
All work with the systems of the fuzzy output was repeated 
for new attribute spaces.   
During all stages the time of FIS generation, their training 
and recognition was computed.   
The results of the experiments are shown in tables 1-3. 
 
The signs of the table columns are as follows: 
N – sampling number  
FULL – a full set of attributes  
PCA – the method of principle components  
FACT – factor analysis 
PT – the percentage of detected objects in the training sam-
pling  
PC – the percentage of detected objects in the checking sam-
pling 
 TCT – the time of FIS creating and training  
TR – the time of recognition in FIS 
CF – the number of factors  
 
The analysis of the experiment results shows that  the use of 
GENFIS1, forming the rules by  a full combination search of 
the whole terms of the rules, leads to approximately great 
losses of time and sometimes overflow of the main memory. 
That is why this method should be rejected or one should 
start to form the hierarchy of the fuzzy output systems, when 
FIS of each level uses a part of interrelated input attributes 
and the output of FIS of the previous level as one of the in-
puts.  
The application of the method of principal components leads 
to reducing of the time of calculations, as   the number of 
attributes are reduced to 2 and to the lowering of the percent 
of correctly recognized objects. 
  

Finally, the method of the factor analysis shortens the time 
of calculations in comparison with the use of the full set of 
attributes and gives sufficiently high precision of recogni-
tion. Therefore, this method can be recommended for the 
observation classification in other subject areas.   
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N FULL PCA FACT 
 PT/PC TCT/TR PT/PC TCT/TR PT/PC TCT/TR CF 
1 100/60 0.29/0.001 80.83/80.83 0.13/ 0.002 100/100 0.006/ 0.001 1 
2 100/66 18.25/0.38 88/88 0.34/0.1 96/90 0.29/0.01 5 
3 Out of memory 65/46 0.26/0.04 97/90 0.28/0.09 5 

N FULL PCA FACT 
 PT/PC TCT/TR PT/PC TCT/TR PT/PC TCT/TR CF 
1 100/61 1.25/0.15 85.83/85.83 0.17/0.0005 100/100 0.027/0.001 1 
2 100/80 6.2/0.02 88/88 0.31/0.04 96/94 0.28/0.06 5 
3 100/78 0.43/0.04 65/46 0.26/0.04 97/86 0.34/0.08 5 

N FULL PCA FACT 
 PT/PC TCT/TR PT/PC TCT/TR PT/PC TCT/TR CF 
1 100/59.17 0.42/0.00118 80.83/80.83 0.11/0.0011 100/100 0.065/0.002 1 
2 94/78 0.55/0.04 88/88 0.32/0.08 100/68 0.46/0.01 5 
3 97/75 0.68/0.07 80/80 0.12/0.1 100/74 0.24/0.02 5 
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