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ABSTRACT 
This work is dedicated to several structure features of Petri 

Nets and the reachable tree. There is detailed description of 

appropriate access in Petri Nets and reachable tree 

mechanism construction. The reachable tree is retrieved, 

corresponding to Petri Nets. Then the infinite reachable tree 

is replaced with "finite" tree, by introducing an item, which 

replaces the idea of an infinite. There is algorithm 

description of the minimal sequence of possible transitions.  

The designed algorithm gets the shortest possible sequence 

for the net advance state, which brings the mentioned net 

state into covering state.   

There is  theorem, which states that through the describing 

algorithm, the number of transitions in covering state is in 

minimal. 
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1. INTRODUCTION 
Construction of discrete systems models need system 

components, with its operations in the abstract, such as, the 

program operator action, trigger transition from one state to 

another, interruptions in the operating system, machine or 

conveyer action, project phase completion etc. In general, 

the same system can operate differently in different 

conditions, bringing a multitude of processes, which means 

operating not deterministically. The real system operates in 

certain time, cases occur in certain periods and last for 

certain time. In synchronic models of discrete systems, the 

events are clearly associated with certain moments or pauses, 

during which all the components make simultaneous change 

in the system state, which is interpreted as a change in the 

system state. State conditions change successively. 

Alongside, these large systems, modeling approach has 

several drawbacks. 

The condition is consistent with the existence of 

situations such as the operation of the system modeled data: 

any registry of computer equipment, parts availability on 

line. 

Terms defined combinations allow to implement any 

of the cases (cases precondition), and the implementation of 

changes create certain conditions (cases post condition), 

which means the cases co-incident with the terms and 

conditions of the case. 

Therefore, it is natural that many systems are suitable as 

discrete structures, consisting of two elements: the type of 

events and terms. The cases and terms in Petri Nets are 

disjoint sets with each other, respectively, called transitions 

and positions sets. Transitions are depicted in a graphical 

representation of Petri Nets (vertical lines), and places, with 

circles [1-3]. 

 

2. PETRI NETS, REACHABLE STATES, 

REACHABLE TREES 
Definition 1: Petri Nets are in ( , )M C 

 
pair, where 

( , , , )C P T I O is the net structure and   is the net 

condition. In structure C  of P -positions, T -transitions are 

finite sets. : , :I T P O T P   are input and output 

functions, respectively, where P

 are all possible 

collections (repetitive elements) of P . 
0: P N 

 
is the 

function of condition, where 
0 {0,1,...}N 

 
is the set of 

integers. 

Saying net state, we will understand the following: 

))(),...,(),(( 21 nPPP  , |,| Pn  },...,{ 1 nPPP   

Suppose we have ),( CM  . 

We will say that in   state Tt j   transition is allowed 

to implement if for  )( ji tIP   there is: 

))(,(#)( jii tIPP  . Suppose in   state jt  

transition is allowed to implement and it is actually acted. In 

this case the net will appear in its new state, ' , which is 

solved in the following way:  

 

))(,(#

))(,(#)()(',

ji

jiiii

tOP

tIPPPPP



   

The meaning of coverage problem is for '  decide 

whether it is reachable to '''   . The coverage problem 

can be solved through the reachable tree. At first for   we 

will build the reachable tree. Then we will search x  peak in 

the way that '][  x . If there is no such a peak, then '  

marking isn’t covered with any reachable marking, if it is 

located in ][x  and gives a reachable marking which 

covers ' -ը [4-6].  

Let’s build Petri Nets reachable tree in picture 1.  

The natural state of this net is (1101), which shows the 

presence of tokens in the net at that moment. The tokens that 

are in picture 1 with little dots, correspond with the presence 

of resources in the net. The state of the net is due to the 

move of the tokens. 

      Let’s correspond states in the edges of the peaks, and 

transitions in the sides.  The root is corresponded with the 

first stat of the net.    

  

 Picture 1. is corresponded with picture 2., in which 

the reachable tree is infinite. Let’s put limitations, for the 

tree to be finite. If any peak is locked, then we will name it 

as terminal.  If there is a state in any peak and there is 

another peak in the tree with the same state which is already 



developed, then we will name the new peak as repeated and 

will not develop it.   

  If there is /*/ type way in the tree, then the way 

through the second peak can be repeated and the states will 

grow. 

   Let’s introduce the idea of infinite much as  : 

    ,   a ,    a , where consta  : 

For example, instead of (5, ), we will write ( , ). In 

this case the tree will become as finite [1], and we will have 

loss of information. 

Let’s give several definitions, which will be used in entire 

work. 

 

 
Picture 1. An example of Petri Nets. 

 

 

 

 

 
 

          

Picture 1. An example of Petri Nets. 

 
 

(2, ) 

(5, ) 

/*/ 
A way in the tree. 

 

Definition 2: The peak is called as boundary if it is a 

subject of processing. 

Definition 3: The peak is called as terminal if it doesn’t 

content a sub tree. 

Definition 4: The peak is called internal, if it is already 

processed. 

Definition 5: The Boundary Peak is repeated if there is an 

internal peak with the same state. 

Let’s describe the structure of the algorithm of the 

reachable tree. 

      Suppose x peak is the next Boundary Peak. The state 

relating to it, will be marked as ][x . Let’s mark with 

ix][  the  i – state condition vector.  

 1. If x  is terminal or repeated peak, then when processing, 

it will become as second peak and go to the second step.  

2. For jt transition Tt j  , so that )],[( jtx  is solved, 

then do the following: Add the tree a new side coming from 

x  , and mark the side as  jt  and name the peak as z . 

 The ][x  will be solved with the following way.  

If from the tree root, on its way to bring z , there is  y  

peak, that  

),],[(][&)],[(][ jij txytxy    

then  iz][ . 

If  kx][ , then  kz][ . In the opposite case:  

rjr txz )],[(][   .  

The second step is repeated for jt . 

3. If the number of the peaks are more, then the algorithm 

finishes its work.  

With the help of this algorithm, we will build (as in 

picture 1.) the Petri Net reachable tree (picture 3.). 

 

 

 

 

 

 

 

 

 
 

Picture 2. The Petri Net Reachable Infinite Tree. 

 

 

 

 

 

 

 

 

 

 

Picture 3. The Petri Net Reachable Tree. 

 
Picture 3. The Reachable Tree of Petri Net. 

 

3. DESCRIPTION OF THE ALGORITHM 

FOR FINDING THE MINIMUM NUMBER 

OF TRANSITIONS IN THE STATE OF 

COVERAGE  

 

Suppose we have Petri Nets in picture 1, and the 

corresponding TT (picture 3) reachable tree. 

Let’s mark as P , and the set of states in Petri Nets as *T  

from TT root till y, transition succession with, G  the 

succession of the peaks in   *T . 

Suppose we have )13,15,1,0(][ x   state. Let’s 

find a y  peak in the reachable tree that ][][ xy    :       

Suppose such peaks are myy ,...,1 . Let’s choose 

one peak among the peaks on which we will use the 

algorithm.  

For every iy  peak, we profile ][ iy . 

Suppose in ][ iy  there is  in ikiii yy ][,...,][ 1  . For 

each ][ iy  we count  




ki

ij

j tzS

1

)( , where 

*)),(,(#)( TttIPtz kkjj  : 

We take the iy  for which the S  is the minimum. If for 

any peak, these numbers are equal, then we take the iy  in 

which *T  height is the minimum. 

For our example ][x  we will cover the following peak: 

1y          ,,,1,11  y       32

* ,ttT   

2y         ,,,2,02  y     132
* ,, tttT   

 

t3 P3 

t2 

P1    t1 
P4 

. 
.

. 

P2 

 

 

(0201) (1112) (1120) 

(1101) 

t3 

t2 

t2 

t3 

(1102) (1110) 
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15(02)                                 

13(111) 

t3 

t2 t2 12(020)          

 11(020) 
10(11)           

9(11)         

4(110) 

8(02)        

7(111)              6(0200)               5(11) 

3(1110) 2(110) 

1(1101) 

 

t3 

t3 
t2 

t2 t3 t1 t2 

t1 

t3 

t3 t2 t1 t2 
t2 

14(11) 

16(02)                                                          17(020)                                                            18(02) 

        



3y         ,,,1,13  y       232
* ,, tttT   

4y         ,,,1,14  y       332
* ,, tttT   

5y         ,,,1,15  y       323
* ,, tttT   

6y         ,,,2,06  y       3213
* ,,, ttttT   

  11 yS      24 yS  

  22 yS      25 yS  

  13 yS      36 yS : 

 

We found out that in minimum number: 

   31 ySyS  ,   21
* yT ,   33

* yT   we take 

the
1y peak.  After choosing the covering peak, we go to the 

usage of the algorithm. Suppose the y is the covering peak.  

1. We take the way, which connects the tree root with y  and 

*T  for our example 32,tt  let’s mark ji tt '
,

*1 Ti  , 

*Tt j  . In this case: 2

'

1 tt  , 
3

'

2 tt  : 

2. For each chosen transitions, the 
'

it , is corresponded with 

ia  numbers in the following way: 

 If for 
'

it  transition ÛPjÛ  1 in the way 

that     
jity '' , , Gy '

then 

  ji xa  in which case 
'

it  transition 

corresponds with jP  position. 

 If for the same 
'

it  transition 

ÛPjkÛ  1 in the way that 

    
kity '' , ,then     kji xxa  ,max . 

Moreover, for 
'

it  transition we will correspond jP  and 

kP  positions. If instead of 
'

it  
 ''''

1 iiii tttt
kk
   

for ÛPjÛ  1 in the way that 

   Gyy j  '' ,,  , then we will correspond ia  

with  and   ji xa  : 

In this case, we will correspond  with jP position. In the 

opposite case, if there is no 
'

it  transition for Pj 1  in 

the way that     
jity '' , , then 1ia , in which 

case  there is no related position for 
'

it . 

For our example: 

131 a  152 a  

4
'
1 ~ Pt    3

'
2 ~ Pt : 

3. Now, we will define the following action for ia : 




















 






0modm)(,1

0)modm( if,

naif
m

na

na
m

na

a

i
i

i
i

i
 

Where n  to 
'

it  or in corresponding jP
 
position, the 

number of tokens are in their first position, and m  from 

'

it  or  to the number of the arrows in the state:   ',# ij tOP . 

If for 
'

it  
transition kPP ,,1   positions correspond, then we 

will take the 1P  
position  for  which:   iax 1 . In this case: 

 10 Pn  ,   ',# ij tOPm  . 

 If there is no corresponding position for 
'

it  transition, then 

we will leave ia  to remain the same. 

For our example:   

   
    .15101510

12111311

22

11





aa

aa
 

4. Let’s mark 
ii ab 1

. For our example: 

.15

12

2

1

2

1

1

1





ab

ab
 

5. Cumulative move. 

1. We will take 
*T  last transition or the succession 

of transition, fix it and mark as t . t  

corresponding 
1
ib is marked as  which we also 

fix.  The fixed 
j

ib doesn’t change in the next 

moves. 

2. We consider all *T items from right to left, 

starting from t . 

Suppose the 
'

kt  
is the considered transition or the transition 

succession and the 1P  is the corresponding position of 
'

kt . 

If  tIP 1 , then 
'

kt  corresponding 
j

ib
 

in the 

next move will get the following value: lbb j
i

j
i  1

, 

where l from 1P  
position t  

is the number of arrows. 

Suppose 
'

kt corresponds with 
lPP ,,1   positions. If 

 lj 1 in the way that  tIPj  , then, 

lbb j
i

j
i  1

, where   tIPl j ,# . In the opposite 

case
j

i

j

i bb 1
. 

3. Now we will fix t the previous action of 

transition and mark it as t . 

The new t  corresponding 
j

ib , we will mark as   and 

move again to the second step. The algorithm will implement 

its work if 
*T fixes its first item. 

 So, for every 
'

it transition or transition succession, there will 

be a corresponding fixed
j

ib number, which will mark for 

'

it  transition or transition succession implementation 

number. For our example: 

   
'

1t           
'

2t  

12          15 

27          15. 



We got that 
'

1t transition must be implemented for 27 times, 

and 
'

2t , 15 times. 

Returning to our appointment, we will get that 

   13,15,1,0x  for covering the state    

   .,,1,1  y  On the way to reach the state we need to 

implement 
2t transition 27  times, and the 3t transition for 

15 times. 

Let’s assign   




l

i

j
is byt

1

,  yTl * . Which means  yts  

is y the number of enabled transitions. 

Lemma 1: Suppose there are 
1y and

2y peaks in the way 

that        xyxy   21 & . In that case 

   21 ytyt ss  . 

Lemma 2: Suppose
1y  and 

2y  are covering peaks. There is 

    :& *
2

*
121 TTySyS  in this case    21 ytyt ss  .

 Theorem: Through the above mentioned number of covering 

state transition algorithm is in its minimal state. 

Proof: Suppose y is the covering peak in our algorithm and 

''

1 ,, ktt  is the succession of transitions. We will show that 

the number of 
''

1 ,, ktt  move is in minimal state. For this 

reason, we need to show that y  covering peak has less 

number of transitions than the number of 
''

1 ,, ktt  . 

Let’s consider two cases: 

1. yy  . 

Suppose the transition number of y  is less than 

''

1 ,, ktt  implementation number. According to the 

algorithm:    ySyS   or 

    .& *
2

*
1 TTySyS   

 If    ySyS    according to lemma 1: 

   ytyt ss
 . We’ve come into a controversy. 

 If      *
2

*
1& TTySyS  according to lemma 2: 

   ytyt ss
 . We’ve come into a controversy. 

2. yy  . 

Suppose succession transitions of y  is 
rss ,,1  . As the 

tree doesn’t contain cycle: 

yy   ''

1 ,, ktt  and
rss ,,1  are the same  

   ytyt ss
 . The theorem is proved. 

 

4. CONCLUSION:  

 

The above mentioned studies and the proved theorem 

brings out several important features of Petri Nets in 

optimization perspective, according which, if Petri Nets 

are used in technical devices, then the idea of succession 

transition passages brings resources and saves time. 
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