
The algorithm description of the shortest

possible sequence of transitions in Petri Nets

Goharik, Petrosyan

International Scientific-Educational centre of NAS RA

Yerevan, Armenia

e-mail: petrosyan_gohar@list.ru

ABSTRACT
This work is dedicated to several structure features of Petri

Nets and the reachable tree. There is detailed description of

appropriate access in Petri Nets and reachable tree

mechanism construction. The reachable tree is retrieved,

corresponding to Petri Nets. Then the infinite reachable tree

is replaced with "finite" tree, by introducing an item, which

replaces the idea of an infinite. There is algorithm

description of the minimal sequence of possible transitions.

The designed algorithm gets the shortest possible sequence

for the net advance state, which brings the mentioned net

state into covering state.

There is theorem, which states that through the describing

algorithm, the number of transitions in covering state is in

minimal.

Keywords
Petri Nets, reachable trees, transition, position, set,

covering condition, token, capacity.

1. INTRODUCTION
Construction of discrete systems models need system

components, with its operations in the abstract, such as, the

program operator action, trigger transition from one state to

another, interruptions in the operating system, machine or

conveyer action, project phase completion etc. In general,

the same system can operate differently in different

conditions, bringing a multitude of processes, which means

operating not deterministically. The real system operates in

certain time, cases occur in certain periods and last for

certain time. In synchronic models of discrete systems, the

events are clearly associated with certain moments or pauses,

during which all the components make simultaneous change

in the system state, which is interpreted as a change in the

system state. State conditions change successively.

Alongside, these large systems, modeling approach has

several drawbacks.

The condition is consistent with the existence of

situations such as the operation of the system modeled data:

any registry of computer equipment, parts availability on

line.

Terms defined combinations allow to implement any

of the cases (cases precondition), and the implementation of

changes create certain conditions (cases post condition),

which means the cases co-incident with the terms and

conditions of the case.

Therefore, it is natural that many systems are suitable as

discrete structures, consisting of two elements: the type of

events and terms. The cases and terms in Petri Nets are

disjoint sets with each other, respectively, called transitions

and positions sets. Transitions are depicted in a graphical

representation of Petri Nets (vertical lines), and places, with

circles [1-3].

2. PETRI NETS, REACHABLE STATES,

REACHABLE TREES
Definition 1: Petri Nets are in (,)M C 

pair, where

(, , ,)C P T I O is the net structure and  is the net

condition. In structure C of P -positions, T -transitions are

finite sets. : , :I T P O T P   are input and output

functions, respectively, where P

 are all possible

collections (repetitive elements) of P .
0: P N 

is the

function of condition, where
0 {0,1,...}N 

is the set of

integers.

Saying net state, we will understand the following:

))(),...,(),((21 nPPP  , |,| Pn  },...,{ 1 nPPP 

Suppose we have),(CM  .

We will say that in  state Tt j  transition is allowed

to implement if for)(ji tIP  there is:

))(,(#)(jii tIPP  . Suppose in  state jt

transition is allowed to implement and it is actually acted. In

this case the net will appear in its new state, ' , which is

solved in the following way:

))(,(#

))(,(#)()(',

ji

jiiii

tOP

tIPPPPP



 

The meaning of coverage problem is for ' decide

whether it is reachable to '''   . The coverage problem

can be solved through the reachable tree. At first for  we

will build the reachable tree. Then we will search x peak in

the way that '][ x . If there is no such a peak, then '

marking isn’t covered with any reachable marking, if it is

located in][x and gives a reachable marking which

covers ' -ը [4-6].

Let’s build Petri Nets reachable tree in picture 1.

The natural state of this net is (1101), which shows the

presence of tokens in the net at that moment. The tokens that

are in picture 1 with little dots, correspond with the presence

of resources in the net. The state of the net is due to the

move of the tokens.

 Let’s correspond states in the edges of the peaks, and

transitions in the sides. The root is corresponded with the

first stat of the net.

 Picture 1. is corresponded with picture 2., in which

the reachable tree is infinite. Let’s put limitations, for the

tree to be finite. If any peak is locked, then we will name it

as terminal. If there is a state in any peak and there is

another peak in the tree with the same state which is already

developed, then we will name the new peak as repeated and

will not develop it.

 If there is /*/ type way in the tree, then the way

through the second peak can be repeated and the states will

grow.

 Let’s introduce the idea of infinite much as  :

   ,   a ,   a , where consta  :

For example, instead of (5,), we will write ( ,). In

this case the tree will become as finite [1], and we will have

loss of information.

Let’s give several definitions, which will be used in entire

work.

Picture 1. An example of Petri Nets.

Picture 1. An example of Petri Nets.

(2,)

(5,)

/*/
A way in the tree.

Definition 2: The peak is called as boundary if it is a

subject of processing.

Definition 3: The peak is called as terminal if it doesn’t

content a sub tree.

Definition 4: The peak is called internal, if it is already

processed.

Definition 5: The Boundary Peak is repeated if there is an

internal peak with the same state.

Let’s describe the structure of the algorithm of the

reachable tree.

 Suppose x peak is the next Boundary Peak. The state

relating to it, will be marked as][x . Let’s mark with

ix][ the i – state condition vector.

 1. If x is terminal or repeated peak, then when processing,

it will become as second peak and go to the second step.

2. For jt transition Tt j  , so that)],[(jtx is solved,

then do the following: Add the tree a new side coming from

x , and mark the side as jt and name the peak as z .

 The][x will be solved with the following way.

If from the tree root, on its way to bring z , there is y

peak, that

),],[(][&)],[(][jij txytxy  

then  iz][.

If  kx][, then  kz][. In the opposite case:

rjr txz)],[(][  .

The second step is repeated for jt .

3. If the number of the peaks are more, then the algorithm

finishes its work.

With the help of this algorithm, we will build (as in

picture 1.) the Petri Net reachable tree (picture 3.).

Picture 2. The Petri Net Reachable Infinite Tree.

Picture 3. The Petri Net Reachable Tree.

Picture 3. The Reachable Tree of Petri Net.

3. DESCRIPTION OF THE ALGORITHM

FOR FINDING THE MINIMUM NUMBER

OF TRANSITIONS IN THE STATE OF

COVERAGE

Suppose we have Petri Nets in picture 1, and the

corresponding TT (picture 3) reachable tree.

Let’s mark as P , and the set of states in Petri Nets as *T

from TT root till y, transition succession with, G the

succession of the peaks in *T .

Suppose we have)13,15,1,0(][x state. Let’s

find a y peak in the reachable tree that][][xy   :

Suppose such peaks are myy ,...,1 . Let’s choose

one peak among the peaks on which we will use the

algorithm.

For every iy peak, we profile][iy .

Suppose in][iy there is  in ikiii yy][,...,][1  . For

each][iy we count 




ki

ij

j tzS

1

)(, where

*)),(,(#)(TttIPtz kkjj  :

We take the iy for which the S is the minimum. If for

any peak, these numbers are equal, then we take the iy in

which *T height is the minimum.

For our example][x we will cover the following peak:

1y    ,,,1,11  y  32

* ,ttT 

2y    ,,,2,02  y  132
* ,, tttT 

t3 P3

t2

P1 t1
P4

.
.

.

P2

(0201) (1112) (1120)

(1101)

t3

t2

t2

t3

(1102) (1110)

(1103) (1112) (0200) (1111)

 t1

 t1 t2
t3

t2

 t1
t2 t1

(0202) (1113) (1122) (0201)

 (0202) (0211)

t2

t3

t2 t3
(0202)

t3

15(02)

13(111)

t3

t2 t2 12(020)

 11(020)
10(11)

9(11)

4(110)

8(02)

7(111) 6(0200) 5(11)

3(1110) 2(110)

1(1101)

t3

t3
t2

t2 t3 t1 t2

t1

t3

t3 t2 t1 t2
t2

14(11)

16(02) 17(020) 18(02)

3y    ,,,1,13  y  232
* ,, tttT 

4y    ,,,1,14  y  332
* ,, tttT 

5y    ,,,1,15  y  323
* ,, tttT 

6y    ,,,2,06  y  3213
* ,,, ttttT 

  11 yS   24 yS

  22 yS   25 yS

  13 yS   36 yS :

We found out that in minimum number:

   31 ySyS  ,   21
* yT ,   33

* yT  we take

the
1y peak. After choosing the covering peak, we go to the

usage of the algorithm. Suppose the y is the covering peak.

1. We take the way, which connects the tree root with y and

*T for our example 32,tt let’s mark ji tt '
,

*1 Ti  ,

*Tt j  . In this case: 2

'

1 tt  ,
3

'

2 tt  :

2. For each chosen transitions, the
'

it , is corresponded with

ia numbers in the following way:

 If for
'

it transition ÛPjÛ  1 in the way

that     
jity '' , , Gy '

then

  ji xa  in which case
'

it transition

corresponds with jP position.

 If for the same
'

it transition

ÛPjkÛ  1 in the way that

    
kity '' , ,then     kji xxa  ,max .

Moreover, for
'

it transition we will correspond jP and

kP positions. If instead of
'

it
 ''''

1 iiii tttt
kk
 

for ÛPjÛ  1 in the way that

   Gyy j  '' ,,  , then we will correspond ia

with  and   ji xa  :

In this case, we will correspond  with jP position. In the

opposite case, if there is no
'

it transition for Pj 1 in

the way that     
jity '' , , then 1ia , in which

case there is no related position for
'

it .

For our example:

131 a 152 a

4
'
1 ~ Pt 3

'
2 ~ Pt :

3. Now, we will define the following action for ia :




















 






0modm)(,1

0)modm(if,

naif
m

na

na
m

na

a

i
i

i
i

i

Where n to
'

it or in corresponding jP

position, the

number of tokens are in their first position, and m from

'

it or  to the number of the arrows in the state:   ',# ij tOP .

If for
'

it
transition kPP ,,1  positions correspond, then we

will take the 1P
position for which:   iax 1 . In this case:

 10 Pn  ,   ',# ij tOPm  .

 If there is no corresponding position for
'

it transition, then

we will leave ia to remain the same.

For our example:

   
    .15101510

12111311

22

11





aa

aa

4. Let’s mark
ii ab 1

. For our example:

.15

12

2

1

2

1

1

1





ab

ab

5. Cumulative move.

1. We will take
*T last transition or the succession

of transition, fix it and mark as t . t

corresponding
1
ib is marked as  which we also

fix. The fixed
j

ib doesn’t change in the next

moves.

2. We consider all *T items from right to left,

starting from t .

Suppose the
'

kt
is the considered transition or the transition

succession and the 1P is the corresponding position of
'

kt .

If  tIP 1 , then
'

kt corresponding
j

ib

in the

next move will get the following value: lbb j
i

j
i  1

,

where l from 1P
position t

is the number of arrows.

Suppose
'

kt corresponds with
lPP ,,1  positions. If

 lj 1 in the way that  tIPj  , then,

lbb j
i

j
i  1

, where   tIPl j ,# . In the opposite

case
j

i

j

i bb 1
.

3. Now we will fix t the previous action of

transition and mark it as t .

The new t corresponding
j

ib , we will mark as  and

move again to the second step. The algorithm will implement

its work if
*T fixes its first item.

 So, for every
'

it transition or transition succession, there will

be a corresponding fixed
j

ib number, which will mark for

'

it transition or transition succession implementation

number. For our example:

'

1t
'

2t

12 15

27 15.

We got that
'

1t transition must be implemented for 27 times,

and
'

2t , 15 times.

Returning to our appointment, we will get that

   13,15,1,0x for covering the state

   .,,1,1  y On the way to reach the state we need to

implement
2t transition 27 times, and the 3t transition for

15 times.

Let’s assign   




l

i

j
is byt

1

,  yTl * . Which means  yts

is y the number of enabled transitions.

Lemma 1: Suppose there are
1y and

2y peaks in the way

that        xyxy   21 & . In that case

   21 ytyt ss  .

Lemma 2: Suppose
1y and

2y are covering peaks. There is

    :& *
2

*
121 TTySyS  in this case    21 ytyt ss  .

 Theorem: Through the above mentioned number of covering

state transition algorithm is in its minimal state.

Proof: Suppose y is the covering peak in our algorithm and

''

1 ,, ktt  is the succession of transitions. We will show that

the number of
''

1 ,, ktt  move is in minimal state. For this

reason, we need to show that y  covering peak has less

number of transitions than the number of
''

1 ,, ktt  .

Let’s consider two cases:

1. yy  .

Suppose the transition number of y  is less than

''

1 ,, ktt  implementation number. According to the

algorithm:    ySyS  or

    .& *
2

*
1 TTySyS 

 If    ySyS   according to lemma 1:

   ytyt ss
 . We’ve come into a controversy.

 If      *
2

*
1& TTySyS according to lemma 2:

   ytyt ss
 . We’ve come into a controversy.

2. yy  .

Suppose succession transitions of y  is
rss ,,1  . As the

tree doesn’t contain cycle:

yy   ''

1 ,, ktt  and
rss ,,1  are the same

   ytyt ss
 . The theorem is proved.

4. CONCLUSION:

The above mentioned studies and the proved theorem

brings out several important features of Petri Nets in

optimization perspective, according which, if Petri Nets

are used in technical devices, then the idea of succession

transition passages brings resources and saves time.

REFERENCES

[1] J. L. Peterson,

"Petri Net Theory and the Modelling of Systems", Prentice

Hall. ISBN 0-13-661983-5, 1981.

[2] T. Murata, "Petri nets: Properties, Analysis and

Applications", Proc. of the IEEE, 77(4), 1989.

[3] V. Ye. Kotov, "Petri Nets", Moscow, World 1984.

[4] D. Knut, "The Art of Programming", T1, T2, T3,

Moscow, Mir 1976.

[5] S. A. Orlov, "Technology of Software Development",

textbook for universities, Petersburg, 2002.

[6] A.V. Gordeev, A. Yu. Molchanov "System Software",

textbook, St. Petersburg, 2002.

