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ABSTRACT

In this paper, we consider some known problems of
graph theory from the linear algebra point of view. Study-
ing features of vector spaces over GF(2) allows us to
reprove the theorem on graph circuits and cut-sets and
develop a new algorithm to recognize a line graph and
construct its original graph.
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1. INTRODUCTION

The study of graphs using a linear algebra approach
gives many interesting results. For example, the theo-
rems relating spectral properties of the adjacency ma-
trix to other graph properties (see, e.g., [3]), the fa-
mous Cheeger’s inequality approximating the sparsest
cut-set (one of the most useful facts in algorithmic appli-
cations) [9], the theorems relating graph diameter and
eigenvalues [1, 12] were proved. It is worth mentioning
that the well-known graph isomorphism problem can be
treated as a linear algebra problem [6].

In this paper, we consider n-dimensional vector spaces
over the field GF(2) consisting of two elements, 0 and
1, with operations (addition and multiplication) using
the usual operations on integers, followed by reduction
modulo 2. With the help of special properties of these
vector spaces, we prove the theorem on graph circuits
and cut-sets [15] and present a new algorithm to recog-
nize a line graph and construct its original graph [5, 10,
11, 13]. The problem of line graph recognition is impor-
tant because some practical problems of graph theory
have rather simple solutions for line graphs [5].

In our opinion, the proposed approach can be applied to
solve some other problems. For example, it can be used
in analysis of vertex and edge covers of graphs (see, e.g,
[8, 15]).

Further, we consider only undirected and simple graphs.

2. THE THEOREM ON GRAPH CIRCUITS

AND CUT-SETS

The following theorem is well-known in graph theory [4,
15, 16].
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Theorem 1. Ewvery graph G can be expressed as a ring
sum of two subgraphs, one of which is in the circuit
subspace and the other is in the cut-set subspace of G.

Further, we obtain this result examining a vector space
over GF(2), and its orthogonal complement.

Consider a vector space G composed of n-tuples of
elements of GF(2) (or (0, 1)-vectors), such as

X = (Il,.Z’Q,. . ‘7mn)T7

where z; € {0,1}, for j =1,2,...,n

with component-wise addition and multiplication by an
element from GF(2).

Consider linearly independent vectors X1, Xo,..., X €
G". Denote by L the linear span of these vectors. Let
vectors Y1, Ya,...,Y,_, be a basis for the orthogonal
complement L~. Denote by J the vector (1,1,...,1)T.
We have the following theorem [7].

Theorem 2. The vector J is a linear combination of
vectors X1,..., Xm, Y1, -+, Yn—m.

Proof. For every vector Z € LNL*, we have (Z,Z) =
0 (here (X,Y) stands for the inner product of two vectors
X and Y). Hence, all such vectors Z are even, i.e., they

have even nonzero components. Consequently, (Z,J) =
0and J € (LN L)L,

Suppose dim(LNL*) = k. Then dim(LNL*Y)* =n—k.
Besides this,

dim(L+ L") = dim L+ dim L™ —dim(LN L") = n—k.

If any vector V € L 4+ L*, then V = X + Y, where
X € L,Y € L*. The vector X is orthogonal to every
vector of L*. Hence, X is orthogonal to every vector
of LN L*. Therefore, X € (LN L*Y)*. Similarly, Y €
(L N L)%, This proves that V € (L N LY)*. Hence,
L+ L+ C(LNL*Y)*. Since

dim(L N L*Y)* = dim(L + L*),
it follows that L + L = (LN LY)*. O

In fact, more is proven here than just the desired claim.
We get that every vector in (L N L1)" is a linear com-
bination of vectors Xi,..., Xm, Y1, ..., Yn_m.



The proof of Theorem 1 in [4, 16] is much more compli-
cated and longer than the proof based on the theory of
vector spaces over GF'(2) presented here.

3. PROBLEM OF LINE GRAPH RECOG-
NITION

Now we consider the problem of recognizing a line graph
and constructing its original graph.

3.1 Theoretical preliminaries

We assume that a given graph is not a complete graph
on three vertices (in this exceptional case there exist two
non-isomorphic original graphs). In all other cases, if
the line graphs of two connected graphs are isomorphic,
then the original graphs are isomorphic [17].

There are three algorithms to determine if a given graph
is a line graph [5, 10, 13]. Recently, a new effective
algorithm has been proposed [11]. Here we provide a
linear algebraic approach to solve this problem. The
algorithm is based on the following theorem [8]:

Theorem 3. A graph G is a line graph if and only if
the edges of G can be partitioned into cliques in such
a way that every verter belongs to exactly two of the
cliques and no two vertices of G are both in the same
two cliques.

Remark 1. It is worth mentioning that a clique may
consist of only one vertex. Obviously, such a clique has
no edges.

Given such a partition into cliques, the original graph
H for which G is the line graph can be constructed by
assigning one vertex in H to each clique, and an edge
in H to each vertex in G with its endpoints being the
two cliques containing the vertex in G.

The problem of line graph recognition is related to that
of matrix factorization. In fact, let D be the adjacency
matrix of a given graph G on m vertices. We have the
following theorem.

Theorem 4. A graph G is the line graph of a certain
graph H if and only if there exists a (0,1)-matriz B
containing exactly two units in every its column such
that D = BT B. In addition, B is the incidence matriz
of the graph H.

Proof. Necessity. According to Theorem 3, partition
the edges of G into n cliques Ci,Cs,...,C,. To each
clique C} assign the column B, € G™ such that its
element in i-th position equals 1 if and only if the i-th
vertex belongs to the clique Cj. Consider the m x n
matrix BT = (B1,Bo,...,B,).

Since every vertex of G lies in exactly two of the cliques,
then every column B; (i € {1,2,...,m}) of the matrix
B contains exactly two units. Since any two different
cliques have not more than one common vertex, all the
columns of the matrix B are different. Thus, the matrix
B can be treated as an incidence matrix of some graph
H with n vertices that is the original graph for G. Re-
ally, the k-th row of matrix B corresponds to the clique

Ck. The j-th and k-th vertices of G are adjacent if and
only if the inner product of the corresponding rows of
matrix B is equal to 1.

Sufficiency. Let B be the incidence matrix of a given
graph H and D be the adjacency matrix of the corre-
sponding line graph G = L(H). The relation D = BT B
is well-known [14]. It can be proved by direct calcula-
tions. [

Corollary 1. Let a graph G with adjacency matriz D
be a line graph of a graph H with incidence matrixz B,
D = BTB. Then there exists a row partition of matric
BT | such that the corresponding subgraphs of graph G =
L(H) with matriz D are cliques satisfying the conditions
of Theorem 3.

Proof. Denote by Ny, (k=1,2,...,n) the set of rows
of matrix BT that have unit in the k-th position. Ob-
viously, this generates the desired row partition of the
matrix BT. O

3.2 Algorithm description

Let us describe an algorithm to recognize a line graph
that is based on the approach provided in [10]. Accord-
ing to Theorem 4, for a given graph G with the adja-
cency matrix D = [dij]mxm, we want to find a (0,1)-
matrix B, such that D = BT B. In addition, in every
column of B there must be exactly two units.

Consider the first vertex of the graph G. Assign this
vertex to two cliques with numbers 1 and 2. Hence, the
first row of the matrix BT is of the form

(1,1,0,...,0).

Note that we do not know the number of columns of
BT but it is obvious that this number does not exceed
m+ 1.

If vertices 1 and 2 are adjacent (since diz = 1), then we
assign vertex 2 to cliques 1 and 3. In the opposite case
(when di2 = 0), we assign vertex 2 to cliques 3 and 4.

Every vertex of G must be assigned to two cliques. This
assignment procedure is unique up to the numeration
of the cliques with only one exception. The exceptional
case happens when there exist three pair-wise adjacent
vertices. In this case, we need in two additional def-
initions. Then we prove Theorem 5 that allows us to
assign the vertices to cliques uniquely.

Definition 1. Given two adjacent vertices of G, there
are two corresponding edges in H that share a vertez.
Let us assume that the other endpoints of these edges
are incident to an edge. Then the vertex of G that cor-
responds to this edge is called the cross node [10].

Without loss of generality, we assume that vertices 1, 2,
and 3 are pair-wise adjacent. Then we assign vertex 1
to cliques 1 and 2, and vertex 2 to cliques 1 and 3. If
vertex 3 is adjacent to the considered vertices, it may
be assigned to cliques 1 and 4, or to cliques 2 and 3.
The choice of one of these two alternatives is defined by
elements of matrix D.



Definition 2. We say that the evenness condition is
fulfilled, if in the first three rows of matrix D the number
of units in every column is even.

In other words, the evenness condition is fulfilled if and
only if the triangle with vertices 1, 2, and 3 is even, i.e.,
every vertex of GG is adjacent to even vertices of these
three ones.

Theorem 5. The evenness condition is fulfilled if and
only if there exists a cross node.

Proof. Denote by I, II, III, IV, and so on, the edges
of H corresponding to vertices of G with numbers 1, 2,
3, 4, and so on, respectively.

Necessity. Suppose that the evenness condition is sat-
isfied. We show that in this case there exists a cross
node.

Recall that we do not consider the exceptional case
when there are no other vertices adjacent to vertices
1, 2 and 3, although the evenness condition is fulfilled.
Consider one of the edges of H that shares common ver-
tices with two edges of edges I, II, III. Without loss of
generality, suppose edge IV shares vertices with edges I
and II. Assume that vertex 3 is not a cross node, so the
edges I, II and III share an endpoint. Then we immedi-
ately obtain that vertex 4 is a cross node.

Sufficiency. Obviously, if vertex 3 is a cross node, then
the evenness condition is fulfilled. Really, in this case
every edge of H shares a vertex with even number of
three edges I, II, III. []

According to Theorem 5, in all cases, when the even-
ness condition is fulfilled, we assign vertex 3 to cliques
2 and 3, otherwise — to cliques 1 and 4. It is clear that
the matrix BT is unique. In this manner, the rest of
the vertices are uniquely assigned to the corresponding
cliques.

If there exists a vertex that cannot be assigned to two
different cliques when all adjacency conditions are ful-
filled, then the graph is not a line graph.

If matrix BT is computed, then the graph is a line graph,
and we can find the matrix A of its original graph H
by the formula A = BBT + S, where S is a diagonal
matrix that has units at the same places, as BBT. The
number of columns of matrix BT is uniquely defined.

3.3 The algorithm

In what follows, we denote by C; the i-th clique, |C;]
— the number of elements in C;, P, — one-dimensional
array containing the i-th row of adjacency matrix D, n.
— the number of cliques containing the current vertex.

Input: an adjacency matrix D

Output: the incidence matrix of original graph (if it
exists)

1. begin 2. Vertex 1 assign to cliques C; and C>
3. fori=2tom

4. Nel = 0

5 fork=1tom+1

6. if the i-th vertex is adjacent to all the vertices
in Ck or |Ck| =0 then

7. if |Ck| # 2 or |Ck| = 2 and the evenness
condition is not fulfilled
then
8. the i-th vertex assign to Cj
9. Nel = Nel + 1
10. if n; = 2 then goto M1 end
11. set to 0 all the components of P; corre-

sponding to the vertices that
are contained in Cj

12. end

13. end

14. M1: end for k

15. if ng < 2 then

16. The graph is not a line graph

17. goto M2

18. end

19. end for i

20. The graph is a line graph

21. M2: end

3.4 Examples

The first example shows how the algorithm works in
the case of a line graph, and in the second example we
consider a graph that is not a line one.

Ezxample 1. Consider a graph G with the adjacency
matric

o1 11 1000
101 011 10
11011000
D_ 101 00O0O0O0
11100000
01 0 0 0 0 1 1
01000101
000O0OOT1T1FP0
The first row of BT is as follows:
(1,1,0,...,0).

The first two vertices are adjacent, so the second row of
BT is as follows:

(1,0,1,0,...,0).

The third vertex is adjacent to the first two ones, and
the evenness condition is not fulfilled. Hence, we get the
third row of BT

(1,0,0,1,0,...,0).

The fourth vertex is adjacent to the first and third ones,
so the fourth row is

(0,1,0,1,0,...,0).

The other rows of BT are defined in a similar way. We
arrive at matrix

OO O~ O - = =
[=NeNoNall e Nl
O, OOO O
DO OO EOO
DO O OO OO
O, OOOOoOOo
= OOoOOoOOoOOoOo



Now we can find matriz A of graph H that is the original
graph for G:

0111100
1001000
1000011

A=BBT+S=]1 1100 0 0 0
1 000000
0010001
00100710

Ezample 2. Consider a graph G with the adjacency
matriz

01 0100
101110
01 0011

D=1 10010
011101
0010710

This graph is one of Beineke’s forbidden-subgraph char-
acterizations of line graphs [2].

The first row of BT is as follows:
(1,1,0,...,0).

The first two vertices are adjacent, so the second row of
BT is as follows:

(1,0,1,0,...,0).

The third vertex is non-adjacent to the first two. Hence,
the third row is as follows:

(0,0,1,1,0,...,0).

The fourth vertez is adjacent to the first two vertices and
non-adjacent to the third one. The evenness condition
for vertices 1, 2 and 4 is not fulfilled. In rows 1, 2 and 4
there is only one unit in the third column of D . Hence,
the fourth row is

(1,0,0,0,1,0,...,0).

The fifth vertex is adjacent to vertices 2, 8 and 4, and
non-adjacent to the first vertex. Therefore, the fifth row
s as follows:

(0,0,1,0,1,0...,0).

And the sixzth vertex is adjacent to vertices 8 and 5,
and non-adjacent to the other ones. This means that
all elements in columns 1, 2, 3 and 5 in the sixth row
are zeros. This condition cannot be fulfilled because the
sixth and the fifth rows must be the same.
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