Fuzzy String Matching with Finite Automata

Armen Kostanyan

Yerevan State University Yerevan, Armenia e-mail: armko@ysu.am

ABSTRACT

The string matching problem is one of the widely-known symbolic computation problems having applications in many areas of artificial intelligence. The most famous algorithms solving the string matching problem are the Rabin-Karp's algorithm, finite automata method, Knuth-Morris-Pratt (KMP) algorithm [1, 2]. In this paper we focus on applying the finite automata method to find a fuzzy pattern in a text.

Keywords

String matching with finite automata, fuzzy sets, fuzzy string matching.

1. STRING MATCHING WITH A FINITE AUTOMATON

The classical string matching problem is formulated as follows [1].

We are given a text T[1..n] of length n and a pattern P[1..m] of length m $(n \ge m)$. It is assumed that the elements of P and T are characters drawn from a finite alphabet Σ . We say that pattern P occurs with shift s in text T if $0 \le s \le n-m$ and T[s+1..s+m]=P[1..m] (that is, T[s+j]=P[j] for $1 \le j \le n$). If P occurs with shift s in T, then s is said to be a valid shift; else it is said to be an invalid shift. The string-matching problem is the problem of finding all valid shifts with which P occurs in T.

The finite automata method is based on the suffix function which is defined as follows.

Given a pattern P[1..m] over an alphabet Σ , the *suffix function* for P is defined as a mapping $\sigma: \Sigma^* \rightarrow \{0, 1, ..., m\}$ such that

 $\sigma(x)=\max\{ k \mid 0 \le k \le m, P_k \text{ is a suffix of } x \},$ where P_k denotes P[1..k].

The pattern P[1..m] derives a finite automaton $M_P=(Q, q_0, F, \Sigma, \delta)$ such that

- *Q*={ 0, 1, ..., *m* } is the set of states;
- *q*₀=0 is the initial state;
- *F*={*m*} is the one-element set of final states;
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function such that $\delta(q, a) = \sigma(P_q a)$ for all $q \in Q$ and $a \in \Sigma$.

Claim. Pattern P[1..m] occurs with shift *s* in text $T[1..n] \Leftrightarrow M_P$ accepts the string T[1..s+m].

Once the automaton M_P is constructed, all valid shifts of P in text T can be determined in O(n) time. Taking into account that with the use of the *prefix function* (which is another string matching function) M_P can be constructed in $O(|\Sigma| \cdot m)$ time, we get the $O(n+|\Sigma| \cdot m)$ total time for string matching with a finite automaton.

2. THE FUZZY STRING MATCHING PROBLEM

Let us generalize the classical string matching problem by formulating the problem of finding a *fuzzy pattern* in a text.

Suppose $(L, \vee, \wedge, 0, 1)$ is a finite lattice with the least element 0 and the greatest element 1. According to [3], a *fuzzy subset* A of a universal set U is defined by a membership function μ_4 : $U \rightarrow L$ that associates with each element x of U a number $\mu_4(x)$ in L representing the grade of membership of x in A. A fuzzy subset A of U can be represented as an additive form

$$A = \sum_{x \in U} x / \mu_A(x).$$

We say that an element x definitely belongs to A, if $\mu_A(x)=1$, and it definitely does not belong to A, if $\mu_A(x)=0$. In contrast, if $0 < \mu_A(x) < 1$, we say that x belongs to A with degree $\mu_A(x)$. Let us define a *fuzzy symbol* t over the alphabet Σ to be a fuzzy subset of Σ . Given a character $a \in \Sigma$ we say that amatches t with grade $\mu(a)$.

Given a set Ξ of fuzzy symbols, we define the *fuzzy pattern* P[1..m] to be a sequence of symbols from Ξ of length m. Given a threshold $\lambda \in L$, we say that a pattern P[1..m] λ -occurs in a text T[1..n] with shift s, if T[s+j] matches P[j] with grade at least λ for all j, $1 \le j \le m$. We say that s is a λ -valid shift, if P λ -occurs in T with shift s. Finally, let us define the λ -fuzzy string matching problem to be the problem of finding all λ -valid shifts of the fuzzy pattern P in text T.

3. PROCESSING TEXT BY A TRANSITION SYSTEM

Suppose the automaton M_P with transition function δ_P has been constructed for a pattern P[1..m] over the alphabet Ξ . We shall describe the solution to the λ -fuzzy string matching problem in terms of a nondeterministic transition system the states of which are pairs $s = \langle q, \alpha \rangle$, where $0 \le q \le m$, α is a sequence of *L*-values of length *q*. We interpret the state $s = \langle q, \langle \alpha_1, ..., \alpha_q \rangle >$ in the following way: if T[h+1], ...,T[h+q] is the sequence of the last *q* read characters, then $\alpha_i = \mu_D [:](T[h+i]), 1 \le i \le q$.

$$\alpha_i = \mu_{P[i]}(I[n+i]), \quad 1 \le i \le q.$$

More precisely, given $\lambda \in L$, consider the transition system $(S, s_0, \Phi, \Sigma, \Delta)$, where

- $S = \{ s = \langle q, \alpha \rangle | 0 \leq q \leq m, \alpha = \langle \alpha_1, \dots, \alpha_q \rangle, \alpha_i \in L \text{ for all } 1 \leq i \leq q \};$
- *s*₀=<**0**, <>> is the start state;
- Φ={ s=<m, <α₁, ..., α_m>> | α_i≥λ, 1≤i≤m } is the set of final states;
- \sum is the text alphabet;
- $\Delta: S \times \Sigma \rightarrow 2^S$ is the transition function such that

$$\begin{bmatrix} q < m, q \xrightarrow{t} (q+1) \in \delta_P \end{bmatrix} \Rightarrow$$

$$\left\langle q, \left\langle \alpha_1, ..., \alpha_q \right\rangle \right\rangle \xrightarrow{a} \left\langle q+1, \left\langle \alpha_1, ..., \alpha_q, \mu_t(a) \right\rangle \right\rangle \in \Delta,$$

$$\begin{bmatrix} q \xrightarrow{t} q' \in \delta_P, q' \leq q \end{bmatrix} \Rightarrow$$

$$\left\langle q, \left\langle \alpha_1, ..., \alpha_q \right\rangle \right\rangle \xrightarrow{a} \left\langle q', \left\langle \alpha_{q-q'+2}, ..., \alpha_q, \mu_t(a) \right\rangle \right\rangle \in \Delta$$
for all $\alpha_1, ..., \alpha_q \in L, a \in \Sigma;$

There are no other transitions in Δ .

Suppose $\omega: \Sigma^* \to 2^s$ is the final-state function for the transition system above such that

 $\boldsymbol{\omega}(\boldsymbol{\varepsilon})=\{s_0\},\$

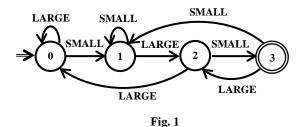
 $\omega(xa) = \{ s' | \text{ there exists } s \in \omega(x) \text{ such that } s' \in \Delta(s, a) \}.$

Theorem. $\omega(T_{s+m}) \cap \Phi \neq \emptyset \Leftrightarrow s$ is a λ -valid shift.

4. EXAMPLE

Let us choose Σ ={ 1, 2, 3, 4, 5 }, *L*={ 0, 0.25, 0.5, 0.75, 1 } and define SMALL and LARGE fuzzy symbols as follows: SMALL= 1/1 + 2/0.75 + 3/0.5 + 4/0.25 + 5/0, LARGE= 1/0 + 2/0.25 + 3/0.5 + 4/0.75 + 5/1.

Assume that Ξ ={SMALL, LARGE}, P= SMALL.LARGE.SMALL (here "." is used as a separator of symbols from Ξ). Fig. 1 below presents the diagram of the automaton M_P :



Assuming that T=32415231, let us consider the following processing of T by the transition system S:

$$s_{0} = \langle 0, \langle \rangle \rangle \qquad \xrightarrow{3} \qquad s_{1} = \langle 0, \langle \rangle \rangle$$

$$\xrightarrow{2} \qquad s_{2} = \langle 1, \langle 0.75 \rangle \rangle$$

$$\xrightarrow{4} \qquad s_{3} = \langle 2, \langle 0.75, 0.75 \rangle \rangle$$

$$\xrightarrow{1} \qquad s_{4} = \langle 3, \langle 0.75, 0.75, 1 \rangle \rangle^{*}$$

$$\xrightarrow{5} \qquad s_{5} = \langle 2, \langle 1, 1 \rangle \rangle$$

$$\xrightarrow{2} \qquad s_{6} = \langle 3, \langle 1, 1, 0.75 \rangle \rangle^{*}$$

$$\xrightarrow{3} \qquad s_{7} = \langle 2, \langle 0.75, 0.5, 1 \rangle \rangle.$$

It follows from this execution of T that at λ =0.75 we have two final states (that is, s_4 and s_6) and, respectively, two 0.75valid shifts (that is, 1 and 3). At λ =0.5 we would have three final states (that is, s_4 , s_6 and s_8) and three 0.5-valid shifts (that is, 1, 3 and 5).

5. PARTIAL FUZZY STRING MATCHING

The transition system constructed in Section 3 can be restricted in one or another way to construct an approximate algorithm that finds some of the occurrences of a fuzzy pattern in a given text. One of such approximate algorithms is provided below in which the transition of the automaton M_P most suitable for next symbol of the given text is always chosen.

In the description of the algorithm we shall use the *singled-valued* function $\gamma_{qq}: L^q \times \Sigma \rightarrow L^{q'}$ defined for all $0 \le q, q' \le m$ in the following way:

 $\begin{array}{l} \gamma_{qq'}(\alpha, a) = \alpha' \Leftrightarrow <\!\!q', \ \alpha' > \in \Delta(<\!\!q, \alpha >, a) \\ \text{for all } \alpha \in L^q \text{ and } a \in \Sigma. \end{array}$

Let us denote by $pr_1(s)$ and $pr_2(s)$ the first and second components of the state $s \in S$, respectively. Finally, for $\alpha = \langle \alpha_1, ..., \alpha_k \rangle$ denote by $\min(\alpha)$ the least component of α , i. e., $\alpha_1 \wedge ... \wedge \alpha_m$.

Algorithm. PARTIAL FUZZY STRING MATCHER.

Input: Fuzzy pattern P[1..m], text T[1..n], threshold λ ($0 < \lambda \le 1$).

Method: currState=<0,<>>for i = 1 to n maxGrade=0for all $t\in\Xi$ if $\mu_t(T[i])>maxGrade$ $maxGrade=\mu_t(T[i])$ sym=t $currState=<q', \gamma_{qq'}(pr_2(currState), T[i])>,$ $where q = pr_1(currState), q'=\delta_P(q, sym)$ if $pr_1(currState)==m \&\& min(pr_2(currState)) \ge \lambda$ $Print ("Pattern \lambda-occurs with shift", i - m)$

Note, that this algorithm recognizes all **0.75**-valid shifts from the example in Section 4. On the other hand, to recognize the **0.5**-valid shift **5**, the algorithm must perform the **LARGE**-transition among two transitions with the same rate **0.5** while reading the second character **3** from state **3**.

The complexity of the algorithm is $O(n \cdot (|\Xi|+m))$. Considering the $O(m \cdot |\Xi|)$ time needed for the construction of the automaton M_p , we get $O(n \cdot (|\Xi|+m))+O(m \cdot |\Xi|)=O(n \cdot (|\Xi|+m))$ total time for partial fuzzy string matching.

6. CONCLUSION

The problem of finding occurrences of a fuzzy pattern in a given text with a given accuracy has been considered in this paper. A nondeterministic transition system is constructed to describe the set of all possible ways of processing the pattern reading the text. This transition system is restricted to obtain a $O(n \cdot (|\Xi|+m))$ -time algorithm for finding some of the occurrences of a fuzzy pattern in the given text.

7. ACKNOWLEDGEMENT

This work was supported by the RA MES State Committee of Science, in the frames of the research project N 15T-18350.

REFERENCES

[1] T. Cormen, C. Leiserson, R. Rivest, C. Stein, "Introduction to Algorithms", 3rd edition, *The MIT Press*, 2009.

[2] B. Smyth, "Computing Patterns in Strings", Addison-Wesley UK, 2003.

[3] L. A. Zadeh, "The Concept of a Linguistic Variable and its Application to Approximate Reasoning-I", *Information Sciences* 8, 199-249, 1975.