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ABSTRACT

Let us adduce some definitions:

If a recursively enumerable (r.e.) set A is a disjoint union of
two sets B and C, then we say that B, C is an r.e. splitting
of A.

The r.e. set A is tt-mitotic (btt-mitotic) if there is an r.e.
splitting (B,C) of A such that the sets B and C both
belong to the same #t- (btt-)degree of unsolvability, as the
set A.

In this paper the existence of the ff-mitotic hypersimple
set, which is not brf - mitotic is proved.
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1. INTRODUCTION

Notation. We shall use the notions and terminology
introduced in (Soare [6]), (Downey and Stob [1]), (Rogers
[4D.

We deal with sets and functions over the nonnegative
integers. @ =1{0,1,2,...}.

Let us define the function z(x,y) as follows:

7(x,y) =%{ X4 2xy+ Y +3x+y}.

The function 7(x,y) is a 1:1 recursive function from

WX® onto @ . We shall use the symbol <.x,y> as an
abbreviation for 7(x,y).
Let 7, and 7, denote the inverse functions
m(<x,y>=xand 7,(<x,y>)=y.

@(x) 1 denotes that @(x) is defined, and @(x) T denotes
that @(x) is undefined.

¢, denotes the characteristic function of A which is often

identified with A and written simply as A(X) .

Definition 1. Let A be the nonempty finite set {x,,---,x,},

where X <X, <. <X,. Then the integer

2% 2% 4.4 2% is called a canonical index of A.If A
is empty, the canonical index assigned to A is 0.

Let D, be the finite set, the canonical index of whichis X
(see [4] p.70).

The definitions of #f - and btt - reducibilities are from [4].

Definition 2. (i) A sequence {Fn} of finite sets is a
new

strong array if there is a recursive function f such that

F, =Dy

(if) An array is disjoint if its members are pairwise disjoint.

(itiy An infinite set B is hyperimmune, abbreviated

h-immune, if there is no disjoint strong array {E’}new such

that ElﬂB?&@ forall n.

(ivy An re. set A is hypersimple, abbreviated

h-simple, if A is h-immune (see Soare [6], p. 80).

Definition 3. (a) The ordered pair €< X, X, > O 3,
where <X;,**, X, > is a k -tuple of integers and & is a
k -ary Boolean function (k >0) is called a truth-table
(or tt -condition) of
{ x,,---,x, }iscalled an associated set of the tt -condition.

(b) The tt -condition << x,,---,x, 2 & 2 is satisfied by
A if ac,(x), -, c,(x))=1.

condition norm k. The set

Notation. Each #7 -condition is a finite object; clearly an
effective coding can be chosen which maps all
tt -conditions (of varying norm) onto @.

Assume henceforth that such a particular coding has been
chosen. When we speak of “#f -condition X ”, we shall
mean the ff -condition with the code number X .

Code <<X,**, X >, (> denotes the code number of
tt -condition << X;,"**,X; > ¢ > in this coding.

Definition 4. (a) A is truth-table reducible to B (notation:
A<

<,, B) if there is a recursive function f such that for all
X [xe A & tt-condition f(x) is satisfied by B ]. We
also abbreviate “truth-table reducibility” as

“It -reducibility”.



(b) A is bounded truth-table reducible to B (notation:
A<, B), if (3recursive f) (dm)(Vx) [t -condition

—bu
f(x) has norm <m, and [ xe A < f(x) is satisfied by
B1).

We abbreviate “bounded truth-table
“btt -reducibility” (see Rogers [4]).

reducibility” as
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Definition 5. Suppose A<, B
tt -condition f(x) is satisfied by B ] and @, = f . Then we say

and (VX)[xe A &

that A<, B by @,.

Definition 6. We say that (A, A, B p,e) is a
quasi- btt -mitotic splitting of A if

a) (A),A) isa re. splitting of A and

b) A<, A, by function ¢ with norm p, (where
p, =7 (e)) and

c) AZ

—btt

q, =7, (6) ).

A, by function ¥ with norm ¢, (where

Let us modify notations defined in (Lachlan [3]) with the
purpose to adapt them to our theorem.

Notation. Let /& be a recursive function from @ onto a)5 .
Define (Y,,Z2,,8,y,,j,) to be
(W;,) ’ml ’¢e3 ’%3 ,64), where /’l(@) = (60,61,62,63,64) .

a quintuple

Definition 7. If A is
non- btt -mitotic condition of e order is satisfied for A, if
it is not the case that (Y,,Z, .8 ,v,, j, ) is a quasi- btt -

re. then we say that the

mitotic splitting of A .
Notation. Let x(e,s) be such a number that &,  (x(e, S))sl«
and Y, (x(e, S))sl« (remind, that ¢ =@, and ¥, = @)

In this case

2 .
as”(e,s) denotes the associated set of
tt -condition ¥ (x(e,s));

3 . ..
as’(e,s) denotes the associated set of #f -condition

V. (x(e.s));

as’(e,s) denotes the set as”(e,s)U as’ (e, ) .

If 19w (x(e, s)) T (l//g’x (x(e,s)) T) , then define
as’(e,s) =D (as’(e,s)=D).
If (09V (x(e, s)) Tv v, (x(e,s)) T) , then define

as'(e,)=3.

e
assoc(e,s) denotes the set Uas @i,s).
i=0

Definition 8. (Y,,Z,,8,,y,,j,) is btt -threatening A

through x(e, ) at stage s, if all the following hold:

l) Ye,x n Ze,x = @ ’

i) (Vy<x(e)@ L & y,, ) &

(Vy < x(e, S)) [the norm of ¢}, () is less or equal than
p., & the normof ¥, () is less or equal than q., 1
where h(e) =(ey,e.e,,6;.¢,), 7T,(e)= P,

Ty(e,) = 9, -
iii) x(e,s)€e Ar <&t -condition ﬂw (n) with norm
p,, satisfied by Y, ) & x(e,5)€ A, & 1 -condition
W, (n) with norm g, ~satisfied by Z, )],

w) A (m)=(F, UZ“)(m) forall me as” (x(e,s)).

For the non- btt -mitotic condition the following proposition
is true:

If (Y.Z,,8.y,,j,) is btt-threatening A through
x(e,s) at stage s, x(e,s)e A—A and for all
m#x(e,s) such that me as (x(e,s)) we have
A(m) = A,(m) , then the non- bt -mitotic condition of order

e is satisfied for A .

This proposition is similar to Lemma 3 (about the nonmitotic
condition) in (Lachlan [3]).

To satisfy the non- btf -mitotic condition of order e for A
do the following. Have a number x(e,§) (so called
follower) in the complement of A ready to put into A if
Y,,Z,,3,¥,,j,) happens to threaten A through X at
some stage § and never put any other number belonging to

as’ (x(e,s)) into A after stage S+1.

Definition 9. For any set AC @ and X€ @ define the

X -column of A. AY ={< X, y> <X, y>€ A} (see
Soare [5], p. 519).

Notation. M, =<

M? :gMe,zf ; Mel :gMe,zm .
M‘:OME‘.

e=0 e=0

oo

M° :UM() .

>

Me,[ =M,, UMe,zm ; M, :OMe,[ :OMe,i .

i=0 i=0

Thus, MOUM1 =w.

Let a,,a,,...,d,,... be the members of set A in

increasing order. The integer a, is denoted as id(A)(i).

For any e,k define:



M., ={id(M,,)(1).id(M, 5, )(2).....
id(M, ) (p., +4q., +D}:

My ={idM 5, )0),id(M, 5, (D),
id(M, 5.,,)(p,, +4.)}-

3. PROOF OF THE THEOREM

Let us prove the following theorem.

Theorem. There exists a tt -mitotic hypersimple set,

which is not btt -mitotic.

Proof (sketch).
The theorem is proved using a finite injury priority
argument. We construct a set A in stages S,

A=U A . The set A will be non- bt -mitotic and,
sew” S

withal, #f -mitotic and hypersimple.

We construct A to satisfy for all €€ @ the requirements:

R, : The non-btt-mitotic condition of order e is satisfied
for A .

P [ (@)D & ) (u#v) =

=D, ND,, =2)]=@»D

0. (v i S A

Note that if A is not brz-mitotic, then A is infinite.

Order the requirenments in the following priority ranking:

R)’R()’Iél’Rl,Rz,Rz,... .

Definition 10. R, requires attention at stage § if there

exists such x that (Y,,Z,,28,¥,,j,) is btt -threatening

A through x atstage § and if it is not satisfied.
Construction

Stage s =0: Let A, =J, x(e,0)= id(Mg’o)(O) for all e.

Stage s+1: Act on the highest priority requirement which
requires attention, if such a requirement exists:

Case 1. Let R, requires attention at stage S (through
x(e,s)).

Let x(e,s)€ M, ,, for some k (thatis x(e,s)=

id(M, 5, )(0)).

Find Z such, that ze€ M;k UM;M+1 &

idM,,,, )(2)€ as (e,5) & idM )(z) & as (e,s).
Such an integer Z exists certainly (because

(vs)[ i|as*(i, s)| < Z (p, +4; )], while

s

.
|Me,2k | = |Me,2k+1

=;m4 +q, )+ D).

We choose the least such integer z,. Set

A=A U e} U{idM L))} id (M, )z} -
Set x(e,s+1)= id(M;,,)0) for all é>e.

Declare R, satisfied, declare all lower R unsatisfied.

Case 2.
Notation. Define [(e,s) =k, where k is such that
x(e,s) =id(M,,,)(0).

For all vyew, if e,k,r are such that

y=id(M,, )(r) v y=id(M,,,,,)(r),thendefine
od(y)=id(M, ;. ,,)(r).

Note if y is such that (e, k,r)(y=id(M,,, )(r))
then y =od(y) .

it @m[(Vi<e)g, (m{ & (Vy,2)[(ze D, ,, &

@, (m)
l(e,s)

ye Oassoc(i, s)U U (M:gi UM:,zm)) =

i=0 i=0
z>o0d(y)]], thenlet my be the least of such m.
If P, isnot satisfied (atstage s) then for each z,k,y

such that z€ D, ,, ) and

(z=id(M, ,))(y) or z=id(M,,,,))()) we set
idM, (e A, and id(M, 5, )(Y)E A, -

Note, that some elements, included into A in that way,
could be included into A before the stage s+1.

Set x(e,s+1)= id(M;,,)0) for all é>e.

Thus, P; is satisfied, declare all lower R unsatisfied.

Verification
Lemma 1. lim_ x(e,s) = x(e) exists for all e.

Proof. By inductionon e .
Suppose there exists a stage o such that forall eé<e

lim, x(é,s) =x(é) exists and is attained by ;.

Then after stage sy only R, and P, canmove x(e,s).
R, and P, each taken separately, after s, acts at most
once and is met. Therefore

35> sy) (x(e,5) =lim_ x(e,s)) .

Notation. Define A= ANM", A=ANM".

Lemma 2. A =, A.

Let us prove that A =, A (where A=ANM",

A:AﬂM1 ). We must construct the function g, which

itreduces A to A and the function g, which

tt-reduces A to A .
In this case there would exist recursive functions g, g,

such that A< A by function

—u

8, and AS,,A by

. ~ 0 gl .
function g, ,because M ~,M " are recursive sets.



We will construct the functions g, g, according to the

following considerations.

Construction of g,: We shall indicate how to compute

g,(x) forany x.

There are three cases to consider:

i) If  3e)@k)(x=id(M,,)0)), then define
go(x) =code<<id(M,,,,,) (0),idM, ;) (D,...,

idM, .) (p+q) > 0>
(where h(e) =(e,.€,e,,65,€,), T(e,)= P>

7,(e) = 4,

0, if x, =x, =..=x, ., =0;
O (Xg Xpsees X, 4y )= G
4 1, otherwise. ).

i) f 3e)@k>0)(xeM,,,), thenfind z such that
x=id(M,,,) (2).

Now define g, (x) = code <<id(M,,,.)) (z), >,,>, where
a,(x)=x forall xe{0,1}.

i) If (Ve) (Vk) (xe {id(M,,)(0)}UM_,,). then
find z such that x =id(M, ,, )(z) . Now define

8o (x) =code<<id(M,,, ,)(z) > a,>, where

a,(x)=x forall xe{0,1}.

Construction of g,: We shall indicate how to compute
g,(x) forany Xx.
There are two cases to consider:

i) If (3e)Fk)(xe M_,,,,). then find z such that
x=id(M_ ) (). Now define

8, (x)=code <<id(M, ,, )(z) >, >, where @, (x)=x
forall xe {0,1}.

ii) If (Ve)(Vk) (xg& M_,,,,), then find Z such that
x=id(M, ) (z). Now define

& (x)=code<<id(M,,,)(2)>, &>, where a,(x)=x

for all xe {0,1}.

The functions g,, g, satisfy the abovementioned

requirements.

Lemma 3. A is not btt -mitotic.

As mentioned above, (Ve) there exists a stage S, such
that (Vs> so)(x(e, s) = x(e, s)) .

For each e case a) or case b) takes place:

a) (—3szs,)((Y,,Z,,8.,¥,,j,) is btt -threatening A
through x(e, §) at stage S ). Therefore, the non- bzt -mitotic

condition of order e is satisfied for A .

b) @szsy)) ((¥,,
through x(e, s) at stage ).

Z,,8,,¥,,],) is btt -threatening A

In this case the follower X(€,5) will be put into A and
non- btt -mitotic condition of order e will be satisfied.

Thus, set A is non- b¢t -mitotic.

Lemma 4. A is hypersimple.

For each ¢é there exists s, such that

(Vi<eé)(Vs 2 s,)(x(i,s,) = x(i,s) = x(i)) .

So foreach é there exists S, such that
(Vi<é)Vs=s,) 3, s,) =13, 5)=1()) .

Therefore, for each € there exists s, such that (Vs 2 s,)

1(2,50) . . I(2,5) ' '

( U (Mi,zi UMi,2i+l) == U (Mi:zi UMi:ZiH) =
i=0 i=0

@

U (M 5 U M, ).

i=0

For each ¢ there exists S, such that (Vs2s,)

assoc(e,s,) = assoc(é,s) = assoc(é) .

Also, for each € there exists S, such that (Vs 2s,)

é é é
Uassoc(i, Sp) = Uassoc(i, s)= Uassoc(i).
i=0 i=0 i=0

Let ¢, be total function and
~Vuv)u#v)=D, D, =9.

Then (Am)(Vy,2)[(z € D, & ye Oassoc(z‘) U
i=0

1)
U(M:zl UM:,zm)) = z>o0d(y)]] . Therefore, there

i=0

exist myg,s, such that (Vz)(z€ D,

Pe.so (Mg
e I(e) . .
all ysuchthat ye | Jassoc(i,s,) U JM,, UM, )

i-0 i=0

y = 2>o0d(y)) for

and Case 2 takes place at stage so+1. So D%(”W is

included in A at stage so+1. Thus P, is met. O
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