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ABSTRACT 

Positioning of a/scmds systems with respect to parametric 

and neural network models. 

A/scmds systems are ontological, systemic, comparable with 

natural languages in covering mental systems and are 

constructively modeling mental systems, at least in a fuzzy 

way.  

The questions arise to the abilities of computers in accepting, 

disposing and properly processing a/smds models. 

Some prospective answers to above questions for RGT 

problems are outlined. 

 

Keywords 
Mental system, Systemic, Ontology, Neural network, 
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1. INTRODUCTION 
1.1. We can operate with realities, i.e., everything that causes 

imprints in us, while, in fact, we operate, at least 

consciously, with those realities that we can classify.  

Utilities are realities that are supporting our goals.  

Mental systems represent realities and utilities in particular, 

but have varying effectiveness with respect to the goals and 

are processed to support utilization and gaining the benefits 

from the utilities.  

All classified realities, in principle, can model each other. 

For example, realities themselves provide models of the 

universe, utilities – the models of realities that support our 

goals, mental systems are, in particular, the models of 

utilities.  

Classifying mental systems is effective with respect to our 

goals to the extent to which they provide appropriate utilities 

regularly, and are modeling the utilities constructively and 

adequately. 

1.2. Natural languages, parametric, statistical and other types 

of algorithms, programming languages, logical calculus, are 

systemically modeling mental systems in a wide range of 

constructiveness and adequacy [32].  

Natural languages (NL) of C are systemic and 

comprehensive by their coverage of mental systems of C but 

classifiers NLCl of NL are not constructive and are modeling 

MsCL only fuzzy because determine not the positives of 

+MsCl but only  IDs of positives  and IDs of relations 

between them. 

There are several other classifiers providing constructive, 

adequate, or both, models of subclasses of MsCl.  

Particularly, classifiers in sciences, algorithms in a variety of 

equal modes, say modes of programming languages (PL), 

parametric, statistic and combinatorial algorithms, methods 

and  deterministic methods, logical calculus’s, others. 

Algorithms, for example, are constructive and systemic since 

comprise certain systems of regs/rules but represent only a 

part of mental systems, namely, mdoers. 

OOP PL are covering  mdoers as well but are more systemic 

with respect to algorithms since involve 

attributes/parents/doing, or Have/Be/Do in [13, 32],  rels. 

Then, predicate calculus is constructive but systemic only 

partly with respect to MsCl since include only rels of logical 

connectivity, commonality and existence.  

1.3. In [32]   constructive models of mental doers and 

systems of those doers, cmds and a/scmds, are specified. 

A/scmds systems are ontological, systemic, and comparable 

with natural languages in covering mental systems and are 

constructively modeling mental systems, at least in a fuzzy 

way. 

An evidence to support the adequacy of the a/scmds 

modeling of Explaining, Understanding and Human-

Computer Communications were provided in [32].   

Cmds by construction are consistent with algorithms by 

Markov and basic units of OOP, thus, following Church 

cmds are adequately modeling, at least, Computable 

Functions (CF). 

1.4. Mental systems specifying other mental systems, in turn, 

can be questioned to be specified and modeled, assuming 

certain classifying them mental systems were already 

acquired from thesauruses of scientific communities. 

Apparently, this chain can be continued. 

Some modes of the above questions are studied in the branch 

of theory of algorithms, synthesis of algorithms, where 

assuming a priory certain classifiers of mdoers are already 

given algorithms of synthesis of equal constructive versions 

of those mdoers are developed. 

Deductive modes of synthesis those mdoers can include 

certain axioms and logical statements or can be determined 

recursively [26]. 

In the inductive modes, including machine learning, those 

mdoers can be represented by samples of their domains or 

their representations, performances of mdoers, others [39]. 

1.5. Certain mental systems provide methods of 

transmission, teaching of mental systems inside of 

communities C as well as methods of acquisition of those 

mental systems.  

While commonality of thesauruses of members of C let them 

avoid specification of those methods it becomes unenviable 

in transmitting and acquiring human mental systems by 

computers. 

In contrast with machine learning where teachers are forced 

to provide to computers the representations of mental 

systems step by step, by portions, teachers can do that 

holistically and completely when they teach them. The 

questions arise to the abilities of computers in accepting, 

disposing and properly processing those mental systems. 

 Prospective answers to above questions for RGT problems 

are presented in [13, 15-17, 27, 28, 29, 30]. 

1.6. In IIAP since 1957 chess and combinatorial problems 

have been studied. A class of combinatorial problems where 

space of solutions are reproducible game trees (RGT) are 

considered. 

The RGT is a spacious class of problems with only a few 

following requirements to belong to- there are  (a) 

interacting  actors ( players, competitors, etc.) performing 

(b)identified types of actions in the (c) specified moments of 

time and (d) specified types of situations 

- there are identified benefits for each of the actors  
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- the situations the actors act in and transformed after the 

actions can be specified by certain rules, regularities. 

Many security and competition problems belong to RGT 

class.  Specifically, these are network Intrusion Protection 

(IP), Management in oligopoly competitions and Chess-like 

combinatorial problems. 

Unified RGT specification of problems makes it possible to 

design a unified Solver for the problems of the class.  

Solver of the RGT problems is a package aimed to acquire 

strategic expert knowledge to become comparable with a 

human in solving hard combinatorial competing and 

combating problems.  

We formulate the limitations in designing effective package 

as follows: 

-  be able to store typical categories of communalized 

mdoers as well as the personalized one and depend on them 

in strategy formation  

-  be able to test approximate mdoers based hypothesis on 

strategies in questioned situation by reliable means, for 

example, using game tree search techniques. 

Overall RGT Solver has several main components. It 

consists of graphical user interface, which provides tools and 

structures for doers’ insertion, controller, which handles 

mdoers, creates nodes from them and stores in a network, 

called Network of Abstracts, does situation processing with 

matching algorithms. The last module is PPIT (Personalized 

planning and integrated testing) module which stores plans 

and goals and searches for strategies based on plans 

1.7. In this paper we are positioning a/scmds models with 

respect to known parametric, statistic, neuron nets (NN) 

models preliminarily outlining those models.  

Then address to computer realization and experiments with 

systemic classification, acquisition of and matching to 

mental systems in frame of RGT Solver to conclude with 

outlining our basic statements. 

2. PARAMETRIC, NON-PARAMETRIC, 

NEURAL NETWORKS 

CLASSIFICATIONS AND MACHINE 

LEARNING 
2.1. Machine learning algorithms can be classified by 

different modes – supervised/unsupervised; parametrical 

(statistical)/non-parametrical, etc. 

For positioning let’s outline some of these methods, describe 

some advantages/disadvantaged and possible use of machine 

learning algorithms by parametrical/non-parametrical 

classification. 

2.2. Parametrical methods. 

Description, advantages: the main algorithm of Parametrical 

Machine Learning includes 2 steps – selecting a form for the 

function and learning the parameters/coefficients for the 

selected function. Some examples of PML algorithms are 

regression (linear, polynomial, ridge, logistic, etc.), LDA, 

etc. 

PML has some advantages in comparison with NPML (also 

some disadvantages which would be described in the next 

subchapter), let us mention some of them, these methods: 

1. are easy to understand 

2. are learning from data very fast 

3. need less training data. 

Problems: wrong choice can impact on problems like 

overfitting/underfitting, but there are many popular methods 

to avoid it. [19] 

 “All models are wrong, but some are useful” © [20] 

This quotation by George Box in 1976 has some similarity to 

a popular theorem called No Free Lunch. The difference is – 

Box means that NO model can solve (predict) by 100 % 

accuracy, and even if it reaches 99 % it cannot be considered 

as right. Anyway, Box also mentioned that some models are 

useful, meaning that it’s useful to solve some problems by 

some (not 100) percent of accuracy and a little (maybe) 

error.  

Nowadays, ML algorithms are a big part of business, so 

reaching 80 % of needed accuracy means 80 % of profit, in 

most cases.  

No Free Lunch theorem consists that no model works best 

for every problem and it’s intuitively clear.  

Let’s mention also some limitations that may appear while 

using PML algorithms: 

It was mentioned in the list of advantages that PML 

algorithms are simple to understand. One of the points of it is 

that they are better suited to simple problems; consequently 

they have limitations on problem’s complexity; 

The solution/prediction highly depends on the chosen 

functional form, say, choosing a polynomial regression of 

degree 2 can give a much better result than the same 

regression of degree 3 and much worse than degree 4. High 

fluctuations create problems. 

Statistical methods 

Statistical Machine Learning (or parametric statistics) is a 

part of PML. Parametric statistics is a branch of statistics 

which assumes that sample data come from a population that 

follows a probability distribution based on a fixed set of 

parameters.  

The difference is that parametric methods put general issues, 

while statistical methods are used when we need to retrieve a 

distribution and find parameters. 

2.3. Non-Parametrical methods 

Description, advantages: talking formally, algorithms that 

do not make strong assumptions about the form of the 

mapping function are called nonparametric machine learning 

algorithms. 

There are many popular NPML methods like Decision Trees, 

k-Nearest Neighbors (taking only k closest training data 

examples), and Bayesian Image Analysis, etc. 

This type of algorithms does not insist using no parameters, 

but that number is flexible and usually increases while 

learning from data. This can be considered as one of the 

advantages of NPML in comparison with PML. 

The other advantage, as already mentioned above, is that 

NPML does not have assumptions about the mapping 

function.  

Problems: let’s now list NPML disadvantages: 

a) slow working – it’s intuitively clear – if algorithm allows 

changing of mapping function while reading more and more 

data it would work slower 

b) more risk to have overfitting 

c) requires much data –> more data –> more changes in 

mapping function -> better results 

2.4. Neural Networks 

Description, advantages: NN has very different types and 

usages [21] [22] [23], anyway, we cannot describe them all, 

so we will discuss them on the whole. 

NN has a lot of advantages but also some big disadvantages. 

One of the biggest advantages is organic learning. This 

means that NN outputs aren’t limited by inputs. NN has the 

ability to generalize its inputs. 

In real life, knowledge can be unitary or composed into a 

system of units, so when presenting knowledge we divide it 

into components and describe them separately (each of the 

components may be also divided, etc.) and define relations 

between them. Say, if we want to describe the room's 

condition, we should do it in the mentioned way. 

In this view, NN is closer to human perception – first layers 

can be for understanding the general shapes, and the last 

ones for exact shapes needed for the given task, say, in 

chess, first layers can be used to detect nuclear variables (for 



example), somewhere in middle it could be mate classifiers 

(if possible to find with ML algorithms), etc. 

The other advantage is the self-repairing system. If NN is 

asked to find out specific data which is no longer in 

communication, it can regenerate large amounts of data and 

help in determining the node that is not working.  

Problems: NN is surely a very powerful instrument, but 

many companies avoid using it – why? NN usually needs a 

long time for working, therefore it is not suitable for real 

time data. For instance, anomaly detection problem (in most 

cases) is being solved with simpler algorithms – Box-Cox 

transformations, simple regressions and more but not NN. 

The problem is that anomaly is needed to be detected fastly 

while NN is important for slower work. 

Some other NN issues are: the selection of the network 

model, the pre-processing of the information for training 

data formation, etc. 

2.4.1. Deep Learning 

Deep learning is a part of a broader family of machine 

learning methods based on learning data representations, as 

opposed to task-specific algorithms.  

Deep learning architectures such as deep neural networks 

have been applied to fields including computer vision, 

speech recognition, natural language processing, audio 

recognition, where they produced results comparable to 

human experts [24][31]. 

Deep Learning is a powerful set of techniques for learning in 

neural networks. It has huge advantages: 

1. Deep Learning can account for different types of 

ambient conditions, like product reflection or lens distortion, 

and learn interesting features to make an inspection robust, 

so it identifies defects that are difficult to detect by other 

methods. 

2. ML has a problem in finding irregular shapes or 

patterns that do not have any symmetry so product variation 

can render the traditional ML impractical. 

3. Deep Learning can detect more subjective defects 

that are difficult to train such as minor product labeling 

errors like incorrect fluid ounces or region that would relate 

to a significant recall. 

4. It is an architecture that can be adapted to new 

problems relatively easily (e.g., Vision, time series, 

language, etc.), using techniques like convolutional neural 

networks, recurrent neural networks, long short-term 

memory, etc. 

Let's also describe some disadvantages: 

1. Deep learning makes better performance if the 

amount of data is huge. If data is little then older learning 

algorithms will outperform deep learning. 

2. Cost problem – the most complex models may take 

days or weeks to train using big amount of machines. 

3. What is learned is not easy to comprehend. Other 

classifiers (e.g., decision trees, logistic regression, etc.), 

make it much easier to understand what’s going on. 

To summarize, some different methods of ML were 

described with both advantages and disadvantages listed. 

Anyway, it should be understood that natural language is the 

most extensive coverage as a model for all beings, but the 

language has shortcomings, and the systemic classifications 

try to eliminate defects and at the same time present the 

whole coverage as maximum possible. 

3. POSITIONING CONSTRUCTIVE 

SYSTEMIC MODELS 
3.1. Systemic Models 

Members of communities C understand explanations of 

mental systems m of members of C if, ideally, activate their 

own equal to m mental systems m’. 

Combinatorial problems, particularly chess, are being solved 

with mapping the essence of the system into parameters with 

parametric and machine learning approaches. 

In [3], as well as in [4, 5] it is stated that the combinatorial 

nature of those problems and their situations (particularly 

chess), cannot be adequately averaged into parameters in 

principle. The line of those researches looks for systemic 

approaches for solving those problems. 

Using mental systems in systemic approaches as a base is 

successfully applied to various problems, including 

combinatorial games, planning in battlefields [6], marketing 

problems, etc., projects, such as SOAR [7] are being 

developed for general planning and strategy searching 

problems within this line. 

There are various ways of presentation of mental systems, 

rule-based [8] approach describes mental doers with rules 

representing “if <A > then <A>” schemes, the advantage of 

such approach is that it is quite easy to define this kind of 

mental doers and it already represents a strategy, however, it 

has disadvantages such as difficulty of induced decisions, 

dynamic updating and reuse of rules.  

Ontologies represent high level properties, relations in 

mental systems, however, ontologies are not flexible enough 

to represent all the space of mental doers in the system (such 

as plans), and cannot be matched. 

UNL (universal networking language) [9, 10] is a declarative 

formal language specifically designed to represent semantic 

data extracted from natural language texts. In the UNL 

framework, the information conveyed by natural language 

documents is represented by a semantic network, i.e., a 

network which represents semantic relations between mental 

doers. This semantic network, or UNL graph, is made of 

three different types of discrete semantic entities: Universal 

Words, Universal Relations and Universal Attributes. 

Universal Words, or simply UW's, are the nodes in the 

semantic network; Universal Relations are arcs linking 

UW's; and Universal Attributes are used to instantiate UW's. 

UNL tries to encode the meanings of natural language 

sentences with a detailed representation of the connections 

between words it lacks the possibility to automatically 

associate the words to the realities. In other words, the 

mechanism of the situation recognition is not developed 

there and nodes represent only relations, not regularities 

inside the objects and its attributes. 

Other systemic approaches include combined approaches. 

Google constructed Knowledge Graph [11] to enhance its 

search engines with systemic solutions, where it uses 

knowledge databases. 

Widely used OOP languages, UML are also systemic 

representations of problems [12]. 

3.2. a/scmds models 

3.2.1. An essential requirement to the a/scmds systemic 

models in [30] is their consistency with the basic 

acknowledged classifiers of mental behavior, doings as 

follows.  

3.2.2. Humans, at least, since the birth do to benefit from 

utilities, i.e., from realities directly or not favoring to their 

roots, as well as to avoid from damagers, to utilize realities 

either already classified as reducible to utilities or to classify 

uncertain, yet, ones [30]. 

The essence of gaining memberships in communities C is in 

acquisition of accumulated by C and commonal in C doers, 

certain meta doers of controlling and developing them as 

well as communicatives  of those doers to communicate 

about realities aimed to coordinate the efforts of members of 

C in solving common in C problems. 

3.2.3. For humans those doers are mainly mental ones while 

communicatives of mental doers can be   their IDs or some 



representations of their nature, say samples they classify, or 

models of those samples.   

In [30] it was assumed that mental doers comprise mental 

systems   having unique IDs and united in nets with nodes 

and relationships between them assigned by those IDs. 

3.2.4. Mental systems in a variety of scopes are intrinsic for 

humans and in a variety of life time periods are formed 

genomic or cognitively.  

They are backing doings for roots, say consuming energy 

and matter of others, or goals induced by roots and varying 

in effectiveness with respect to them.  

Communicatives of C of certain types represent mental 

systems and can be organized into languages L, like English 

is organized from IDs of certain mental systems that have 

thesauruses comprising mental systems of C, corpuses of the 

totalities of IDs, syntacies and semantics of L [30]. 

Mental systems in the nets of mental doers correspond to 

connectivity subnets rooted in the nodes of subsystems of 

connectivity subnets.  

Mental systems determine classes of equality of realities, 

their nodes can be processed for several goals, can be 

decomposed or abstracted. 

For example, mental systems Factories include nodes of their 

stuff, workshops, buildings, etc., and a variety of mental 

systems and realities can be equal or match them, be 

decomposed or abstracted.  

Other aspects in classifying systems include, particularly, 

synchronous availability out of their origin in time , say in 

past or in present, being causes or their effects,  

and equidistant accessibility like the nodes in “star” types 

networks. 

3.2.5. Effectiveness of mental systems rises by, particularly, 

grounding msystems to commonly acknowledged ones like 

axioms or rules of logical inferences,  eliminating malicious 

circles in their representations , and more, being consistent 

with , say, cause –effect or originations in time  chains of  

realities  the mental systems represent. 

The most powerful mental systems, seemingly,  we gain 

when provide their  constructive models and make them 

adequate [30]. 

4. CONSTRUCTIVE SYSTEMIC 

MODELS FOR RGT SOLUTIONS 
4.1. Network of abstracts 

We construct Network of Abstracts (NA) based on mdoers 

defined via interface. Their Structure is based on English 

language grammar, particularly Have, Be and Do (HBD) 

main dimensions of its verbs [13, 14]. Similar to classes in 

OOP, say in Java, HBD model of the mental system 

presentation enables abstracts in NA related with Be 

(inheritance) and Have (attributes) relations, as well as Do 

relation (similar functions and methods of OOP) are 

achieved by actions. There are 4 types of abstracts identified: 

1) Nuclear/primitive abstacts which serve as ground for 

construction of NA, particularly for chess they can be Figure 

Color (black, white), Figure Type (king, queen, rook, etc.), X 

and Y cords (to define the chess situation on the board) 2) 

Composite abstracts which can be composed of other types 

of abstracts, can be derived from other composites and can 

be virtual (e.g., check concept of chess is virtual and its 

specifications are check by knight, check by pawn, etc.), 3) 

Sets, which are similar to arrays in OOP, enable definition of 

bundles of abstracts of the same type 4) Actions which 

consist of composite precondtions and regularities defining 

situation updates [14]. 

Fig. 1 shows the Network of Abstracts, where all 3 types of 

HBD relations are presented. 

The matching of situations to abstracts in NA is performed 

as described in [15]. In RGT Solvers abstracts and situations 

are stored in store of abstracts (Fig. 2). 

Solver’s processing of situations iteratively triggers the 

matching or ablation of the instances of abstracts lying in the 

Network of Abstracts, consequently, building the matched 

set of abstracts in the Solver.  The procedure of composing 

abstracts from sub-abstracts represents a classical constraint 

satisfaction problem. NA nodes are divided into two 

functional categories: filtering and conjunction nodes. The 

first ones decide whether to discard or propagate further 

matched instances by applying conditions. While, the 

conjunction nodes serve as assemblers trying to match 

different sets of matched attributes’ instances for generating 

a new instance corresponding to the node’s abstract. 

Matching algorithm description 

Nucleus nodes serve only as filters, Composite nodes are 

combining the characteristics of both node types uniting the 

instances of attributes and filtering out the ones which 

violate the rules. It is necessary to check all possible 

combinations of the attributes which are achieved by keeping 

the list of partial instances which represent all allowed (by 

rules of the abstract) combinations of already arrived sub-

instances. Set nodes are just collecting the same type 

elements satisfying the rules described in [16]. Action nodes 

are considered matched when their precondition is activated, 

which is represented as a composite node. 

The matching to virtual abstracts is done as described: they 

are being matched by their children (called specifications of 

virtual abstracts) when the latter ones get matched, when 

they are used as attributes in other abstracts (those are called 

usages) they are activated by their parent virtuals. 

The presentation and matching also support negation of 

abstracts [16]. 

4.2. Structure of Plans and Goals 

Strategies in RGT Solvers are constructed based on goals 

and plans [17, 18]. 

In Solver goals consist of precondition, postcondition which 

are composite abstracts depth of goal search tree. 

Preconditions are situations for which this goal is applicable. 

This basically defines the pattern of situations where goal is 

meaningful. For some goals the precondition can be any 

situation. Postconditions are situations which appear when 

the goal is achieved, e.g., if the goal is “make check with the 

queen”, after it is achieved the opponent king is under check 

Fig. 1 Network of Abstracts and HBD relations 

Fig. 2 Store of abstracts 



Fig. 4 Chess board example for 

matching demonstration 

{"name":"sit_1","elements":[ 

{"groupid":1,"instances":[ 

{"type":"X","value":1}, 

{"type":"Y","value":8}, 

{"type":"FigureType","value":"0"}, 

{"type":"FigureColor","value":"0"} 

]} 

… 

{"groupid":34,"instances":[ 

{"type":"X","value":2}, 

{"type":"Y","value":4}, 

{"type":"FigureType","value":"1"}, 

{"type":"FigureColor","value":"1"} 

]}, 

... 

]} 

 Fig. 6 Situation presentation in Solver 

Fig. 5 Matching process 

of queen in the given situation, this can be any situation as 

well. 

Plans are list of goals sorted with their priorities. 

4.2.1. Searching for Strategies based on Plans 

Processing of plans for searching strategies on the given 

situation is done by the goals defined in the plan. Goals are 

processed and the goal with the highest priority which 

matches is selected and the optimal moves for it are 

suggested (Fig 3). 

4.3. Let’s discuss the situation on the chess board in Fig 4, in 

Solver it is defined as in 

Fig 5. 

4.3.1. First level of 

matching 

Matching starts of the 

concepts from the first 

group. The algorithm 

iterates over the nucleus 

instances of the situation 

and fires the instances to 

the nucleus nodes of the 

corresponding types. In 

this case it starts from X 

instance (value is 1) with 

groupid = 1. It finds X 

nucleus type node in NA and checks if the value of the 

instance satisfies the regulations of the node. As the value is 

1, it is fired forward. It also creates partial matches for Field, 

Figure, Rook and other types of Figures. Next comes Y = 8 

instance of the same groupid = 1, it is being passed to Y 

node, which itself adds its instance in the partial matches of 

Field, Figure, and all types of Figures, except Pawn (Y=8 

doesn't satisfy the rule defined in Pawn), with the same 

groupid. Similarly FigureType of the same groupid fires 

instance of FigureType nucleus node and registers its 

instance to partial match Field with the same groupid. 

Finally, FigureColor instance is being fired, which makes 

partial match of Field complete, thereby, leads to firing of an 

instance of Field forward. Similar procedures are applied to 

the rest of the fields. 

4.3.2. Second level of matching 

Now, let's consider the processing of the second phase 

concepts. We shall note, that the matching algorithm works 

in depth first fashion, thus, once the nodes are activated they 

are fired further and lead to partial/complete matches of 

successive nodes. 

The activation of FieldUnderCheck is triggered by the 

activation of one of its specifications. It has a specification 

FieldUnderCheckOfRook which is also virtual and is 

specified as a composite abstract that contains a Set abstract 

EmptyFields in 

it which defined 

the line between 

two figures, in 

this case fields 

between rook 

and the pawn 

and fields 

between the 

rook and the 

knight. Let's 

first discuss the 

activation of. 

Sitaution 

processing over 

already 

activated 

figures and 

fields triggers activation of 2 EmptyFields with between 

rook and the pawn and the rook and the knight. Rest fields 

are not added into those EmptyField type abstracts, because 

of rules defined in them [16].  On the same level moves by 

figures are activated as their preconditions are activated, 

more abstracts activate on the next level of those abstracts, 

such as FieldUnderCheckOfRook, 

FieldUnderCheckOfPawn, and other abstracts. Matching to 

next levels is happening similar to this, when a new node is 

activated (as said above here abstracts compose of filtering 

and conjunction functions).  

What follows from the experiment, is that each successive 

layer reuses the achievements of the previous ones. As 

shown in the image the first level of matching is nucleus 

abstracts, such as coords, figure type and color in the case of 

chess. Next level is appearing simple knowledge pieces, such 

as figure and certain figure types, as well as fields in chess. 

Next it comes the composite level where nodes can have 

both filtering and conjunction. In the example 

FieldUnderCheckOfPawn is an abstract matched on that 

level. 

The essence of HBD model is to build a shell which would 

represent the knowledge using linguistic relations while the 

same time will enable automatic matching of the situation to 

the existing knowledge.  Thereby, the advances in the UNL 

are opening perspectives to integrate and enrich the linguistic 

relations used in the HBD model and implement more 

advanced matching algorithms. 

5. CONCLUSION 
Systemic approach to problem solving is discussed. 

Overview for various mental system models is given, 

including parametric, statistic methods, as well as neural 

networks are discussed with their advantages and 

disadvantages. 

Expectations from mental systems are defined and their 

constructive models are discussed and some of their 

shortcomings are mentioned. 

Fig. 3 Block scheme of optimal move searching algorithm 



Our approach for modeling constructive mental systems for 

RGT class of problems is given with overall abilities 

overview. RGT Solvers are able to acquire RGT problems 

and provide systemic solutions to them. Mental doers in 

RGT Solvers are presented in the Network of Abstracts 

which is also able to be matched to situations. 

We plan to prove the adequacy of our a/scmds models for 

mental behaviors classified by psychologists and 

psychiatrists as keys to identifying the wellbeing of humans. 

Future development of RGT Solvers is expected to be 

developed in the following directions: a) Enhance matching 

algorithms with machine learning solutions, b) enhance 

mental doers presentation and acquisition with natural 

language and UNL bases. 
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