
On Systemic Classifications and Machine Learning

 Edward Pogossian
Division of Computational and

Cognitive networks, IPIA, NAS RA

Yerevan, Armenia

e-mail: epogossi@aua.am

Sedrak Grigoryan
Division of Computational and

Cognitive networks, IPIA, NAS RA

Yerevan, Armenia

e-mail: addressforsd@gmail.com

Nairi Hakobyan
Mathematical and programming

security of computers, complexes

and computer networks , RAU

Yerevan, Armenia

e-mail: hakobyannairi@gmail.com

ABSTRACT

Positioning of a/scmds systems with respect to parametric

and neural network models.

A/scmds systems are ontological, systemic, comparable with

natural languages in covering mental systems and are

constructively modeling mental systems, at least in a fuzzy

way.

The questions arise to the abilities of computers in accepting,

disposing and properly processing a/smds models.

Some prospective answers to above questions for RGT

problems are outlined.

Keywords
Mental system, Systemic, Ontology, Neural network,

Combinatory.

1. INTRODUCTION
1.1. We can operate with realities, i.e., everything that causes

imprints in us, while, in fact, we operate, at least

consciously, with those realities that we can classify.

Utilities are realities that are supporting our goals.

Mental systems represent realities and utilities in particular,

but have varying effectiveness with respect to the goals and

are processed to support utilization and gaining the benefits

from the utilities.

All classified realities, in principle, can model each other.

For example, realities themselves provide models of the

universe, utilities – the models of realities that support our

goals, mental systems are, in particular, the models of

utilities.

Classifying mental systems is effective with respect to our

goals to the extent to which they provide appropriate utilities

regularly, and are modeling the utilities constructively and

adequately.

1.2. Natural languages, parametric, statistical and other types

of algorithms, programming languages, logical calculus, are

systemically modeling mental systems in a wide range of

constructiveness and adequacy [32].

Natural languages (NL) of C are systemic and

comprehensive by their coverage of mental systems of C but

classifiers NLCl of NL are not constructive and are modeling

MsCL only fuzzy because determine not the positives of

+MsCl but only IDs of positives and IDs of relations

between them.

There are several other classifiers providing constructive,

adequate, or both, models of subclasses of MsCl.

Particularly, classifiers in sciences, algorithms in a variety of

equal modes, say modes of programming languages (PL),

parametric, statistic and combinatorial algorithms, methods

and deterministic methods, logical calculus’s, others.

Algorithms, for example, are constructive and systemic since

comprise certain systems of regs/rules but represent only a

part of mental systems, namely, mdoers.

OOP PL are covering mdoers as well but are more systemic

with respect to algorithms since involve

attributes/parents/doing, or Have/Be/Do in [13, 32], rels.

Then, predicate calculus is constructive but systemic only

partly with respect to MsCl since include only rels of logical

connectivity, commonality and existence.

1.3. In [32] constructive models of mental doers and

systems of those doers, cmds and a/scmds, are specified.

A/scmds systems are ontological, systemic, and comparable

with natural languages in covering mental systems and are

constructively modeling mental systems, at least in a fuzzy

way.

An evidence to support the adequacy of the a/scmds

modeling of Explaining, Understanding and Human-

Computer Communications were provided in [32].

Cmds by construction are consistent with algorithms by

Markov and basic units of OOP, thus, following Church

cmds are adequately modeling, at least, Computable

Functions (CF).

1.4. Mental systems specifying other mental systems, in turn,

can be questioned to be specified and modeled, assuming

certain classifying them mental systems were already

acquired from thesauruses of scientific communities.

Apparently, this chain can be continued.

Some modes of the above questions are studied in the branch

of theory of algorithms, synthesis of algorithms, where

assuming a priory certain classifiers of mdoers are already

given algorithms of synthesis of equal constructive versions

of those mdoers are developed.

Deductive modes of synthesis those mdoers can include

certain axioms and logical statements or can be determined

recursively [26].

In the inductive modes, including machine learning, those

mdoers can be represented by samples of their domains or

their representations, performances of mdoers, others [39].

1.5. Certain mental systems provide methods of

transmission, teaching of mental systems inside of

communities C as well as methods of acquisition of those

mental systems.

While commonality of thesauruses of members of C let them

avoid specification of those methods it becomes unenviable

in transmitting and acquiring human mental systems by

computers.

In contrast with machine learning where teachers are forced

to provide to computers the representations of mental

systems step by step, by portions, teachers can do that

holistically and completely when they teach them. The

questions arise to the abilities of computers in accepting,

disposing and properly processing those mental systems.

 Prospective answers to above questions for RGT problems

are presented in [13, 15-17, 27, 28, 29, 30].

1.6. In IIAP since 1957 chess and combinatorial problems

have been studied. A class of combinatorial problems where

space of solutions are reproducible game trees (RGT) are

considered.

The RGT is a spacious class of problems with only a few

following requirements to belong to- there are (a)

interacting actors (players, competitors, etc.) performing

(b)identified types of actions in the (c) specified moments of

time and (d) specified types of situations

- there are identified benefits for each of the actors

mailto:addressforsd@gmail.com
mailto:addressforsd@gmail.com
mailto:hakobyannairi@gmail.com

- the situations the actors act in and transformed after the

actions can be specified by certain rules, regularities.

Many security and competition problems belong to RGT

class. Specifically, these are network Intrusion Protection

(IP), Management in oligopoly competitions and Chess-like

combinatorial problems.

Unified RGT specification of problems makes it possible to

design a unified Solver for the problems of the class.

Solver of the RGT problems is a package aimed to acquire

strategic expert knowledge to become comparable with a

human in solving hard combinatorial competing and

combating problems.

We formulate the limitations in designing effective package

as follows:

- be able to store typical categories of communalized

mdoers as well as the personalized one and depend on them

in strategy formation

- be able to test approximate mdoers based hypothesis on

strategies in questioned situation by reliable means, for

example, using game tree search techniques.

Overall RGT Solver has several main components. It

consists of graphical user interface, which provides tools and

structures for doers’ insertion, controller, which handles

mdoers, creates nodes from them and stores in a network,

called Network of Abstracts, does situation processing with

matching algorithms. The last module is PPIT (Personalized

planning and integrated testing) module which stores plans

and goals and searches for strategies based on plans

1.7. In this paper we are positioning a/scmds models with

respect to known parametric, statistic, neuron nets (NN)

models preliminarily outlining those models.

Then address to computer realization and experiments with

systemic classification, acquisition of and matching to

mental systems in frame of RGT Solver to conclude with

outlining our basic statements.

2. PARAMETRIC, NON-PARAMETRIC,

NEURAL NETWORKS

CLASSIFICATIONS AND MACHINE

LEARNING
2.1. Machine learning algorithms can be classified by

different modes – supervised/unsupervised; parametrical

(statistical)/non-parametrical, etc.

For positioning let’s outline some of these methods, describe

some advantages/disadvantaged and possible use of machine

learning algorithms by parametrical/non-parametrical

classification.

2.2. Parametrical methods.

Description, advantages: the main algorithm of Parametrical

Machine Learning includes 2 steps – selecting a form for the

function and learning the parameters/coefficients for the

selected function. Some examples of PML algorithms are

regression (linear, polynomial, ridge, logistic, etc.), LDA,

etc.

PML has some advantages in comparison with NPML (also

some disadvantages which would be described in the next

subchapter), let us mention some of them, these methods:

1. are easy to understand

2. are learning from data very fast

3. need less training data.

Problems: wrong choice can impact on problems like

overfitting/underfitting, but there are many popular methods

to avoid it. [19]

 “All models are wrong, but some are useful” © [20]

This quotation by George Box in 1976 has some similarity to

a popular theorem called No Free Lunch. The difference is –

Box means that NO model can solve (predict) by 100 %

accuracy, and even if it reaches 99 % it cannot be considered

as right. Anyway, Box also mentioned that some models are

useful, meaning that it’s useful to solve some problems by

some (not 100) percent of accuracy and a little (maybe)

error.

Nowadays, ML algorithms are a big part of business, so

reaching 80 % of needed accuracy means 80 % of profit, in

most cases.

No Free Lunch theorem consists that no model works best

for every problem and it’s intuitively clear.

Let’s mention also some limitations that may appear while

using PML algorithms:

It was mentioned in the list of advantages that PML

algorithms are simple to understand. One of the points of it is

that they are better suited to simple problems; consequently

they have limitations on problem’s complexity;

The solution/prediction highly depends on the chosen

functional form, say, choosing a polynomial regression of

degree 2 can give a much better result than the same

regression of degree 3 and much worse than degree 4. High

fluctuations create problems.

Statistical methods

Statistical Machine Learning (or parametric statistics) is a

part of PML. Parametric statistics is a branch of statistics

which assumes that sample data come from a population that

follows a probability distribution based on a fixed set of

parameters.

The difference is that parametric methods put general issues,

while statistical methods are used when we need to retrieve a

distribution and find parameters.

2.3. Non-Parametrical methods

Description, advantages: talking formally, algorithms that

do not make strong assumptions about the form of the

mapping function are called nonparametric machine learning

algorithms.

There are many popular NPML methods like Decision Trees,

k-Nearest Neighbors (taking only k closest training data

examples), and Bayesian Image Analysis, etc.

This type of algorithms does not insist using no parameters,

but that number is flexible and usually increases while

learning from data. This can be considered as one of the

advantages of NPML in comparison with PML.

The other advantage, as already mentioned above, is that

NPML does not have assumptions about the mapping

function.

Problems: let’s now list NPML disadvantages:

a) slow working – it’s intuitively clear – if algorithm allows

changing of mapping function while reading more and more

data it would work slower

b) more risk to have overfitting

c) requires much data –> more data –> more changes in

mapping function -> better results

2.4. Neural Networks

Description, advantages: NN has very different types and

usages [21] [22] [23], anyway, we cannot describe them all,

so we will discuss them on the whole.

NN has a lot of advantages but also some big disadvantages.

One of the biggest advantages is organic learning. This

means that NN outputs aren’t limited by inputs. NN has the

ability to generalize its inputs.

In real life, knowledge can be unitary or composed into a

system of units, so when presenting knowledge we divide it

into components and describe them separately (each of the

components may be also divided, etc.) and define relations

between them. Say, if we want to describe the room's

condition, we should do it in the mentioned way.

In this view, NN is closer to human perception – first layers

can be for understanding the general shapes, and the last

ones for exact shapes needed for the given task, say, in

chess, first layers can be used to detect nuclear variables (for

example), somewhere in middle it could be mate classifiers

(if possible to find with ML algorithms), etc.

The other advantage is the self-repairing system. If NN is

asked to find out specific data which is no longer in

communication, it can regenerate large amounts of data and

help in determining the node that is not working.

Problems: NN is surely a very powerful instrument, but

many companies avoid using it – why? NN usually needs a

long time for working, therefore it is not suitable for real

time data. For instance, anomaly detection problem (in most

cases) is being solved with simpler algorithms – Box-Cox

transformations, simple regressions and more but not NN.

The problem is that anomaly is needed to be detected fastly

while NN is important for slower work.

Some other NN issues are: the selection of the network

model, the pre-processing of the information for training

data formation, etc.

2.4.1. Deep Learning

Deep learning is a part of a broader family of machine

learning methods based on learning data representations, as

opposed to task-specific algorithms.

Deep learning architectures such as deep neural networks

have been applied to fields including computer vision,

speech recognition, natural language processing, audio

recognition, where they produced results comparable to

human experts [24][31].

Deep Learning is a powerful set of techniques for learning in

neural networks. It has huge advantages:

1. Deep Learning can account for different types of

ambient conditions, like product reflection or lens distortion,

and learn interesting features to make an inspection robust,

so it identifies defects that are difficult to detect by other

methods.

2. ML has a problem in finding irregular shapes or

patterns that do not have any symmetry so product variation

can render the traditional ML impractical.

3. Deep Learning can detect more subjective defects

that are difficult to train such as minor product labeling

errors like incorrect fluid ounces or region that would relate

to a significant recall.

4. It is an architecture that can be adapted to new

problems relatively easily (e.g., Vision, time series,

language, etc.), using techniques like convolutional neural

networks, recurrent neural networks, long short-term

memory, etc.

Let's also describe some disadvantages:

1. Deep learning makes better performance if the

amount of data is huge. If data is little then older learning

algorithms will outperform deep learning.

2. Cost problem – the most complex models may take

days or weeks to train using big amount of machines.

3. What is learned is not easy to comprehend. Other

classifiers (e.g., decision trees, logistic regression, etc.),

make it much easier to understand what’s going on.

To summarize, some different methods of ML were

described with both advantages and disadvantages listed.

Anyway, it should be understood that natural language is the

most extensive coverage as a model for all beings, but the

language has shortcomings, and the systemic classifications

try to eliminate defects and at the same time present the

whole coverage as maximum possible.

3. POSITIONING CONSTRUCTIVE

SYSTEMIC MODELS
3.1. Systemic Models

Members of communities C understand explanations of

mental systems m of members of C if, ideally, activate their

own equal to m mental systems m’.

Combinatorial problems, particularly chess, are being solved

with mapping the essence of the system into parameters with

parametric and machine learning approaches.

In [3], as well as in [4, 5] it is stated that the combinatorial

nature of those problems and their situations (particularly

chess), cannot be adequately averaged into parameters in

principle. The line of those researches looks for systemic

approaches for solving those problems.

Using mental systems in systemic approaches as a base is

successfully applied to various problems, including

combinatorial games, planning in battlefields [6], marketing

problems, etc., projects, such as SOAR [7] are being

developed for general planning and strategy searching

problems within this line.

There are various ways of presentation of mental systems,

rule-based [8] approach describes mental doers with rules

representing “if <A > then <A>” schemes, the advantage of

such approach is that it is quite easy to define this kind of

mental doers and it already represents a strategy, however, it

has disadvantages such as difficulty of induced decisions,

dynamic updating and reuse of rules.

Ontologies represent high level properties, relations in

mental systems, however, ontologies are not flexible enough

to represent all the space of mental doers in the system (such

as plans), and cannot be matched.

UNL (universal networking language) [9, 10] is a declarative

formal language specifically designed to represent semantic

data extracted from natural language texts. In the UNL

framework, the information conveyed by natural language

documents is represented by a semantic network, i.e., a

network which represents semantic relations between mental

doers. This semantic network, or UNL graph, is made of

three different types of discrete semantic entities: Universal

Words, Universal Relations and Universal Attributes.

Universal Words, or simply UW's, are the nodes in the

semantic network; Universal Relations are arcs linking

UW's; and Universal Attributes are used to instantiate UW's.

UNL tries to encode the meanings of natural language

sentences with a detailed representation of the connections

between words it lacks the possibility to automatically

associate the words to the realities. In other words, the

mechanism of the situation recognition is not developed

there and nodes represent only relations, not regularities

inside the objects and its attributes.

Other systemic approaches include combined approaches.

Google constructed Knowledge Graph [11] to enhance its

search engines with systemic solutions, where it uses

knowledge databases.

Widely used OOP languages, UML are also systemic

representations of problems [12].

3.2. a/scmds models

3.2.1. An essential requirement to the a/scmds systemic

models in [30] is their consistency with the basic

acknowledged classifiers of mental behavior, doings as

follows.

3.2.2. Humans, at least, since the birth do to benefit from

utilities, i.e., from realities directly or not favoring to their

roots, as well as to avoid from damagers, to utilize realities

either already classified as reducible to utilities or to classify

uncertain, yet, ones [30].

The essence of gaining memberships in communities C is in

acquisition of accumulated by C and commonal in C doers,

certain meta doers of controlling and developing them as

well as communicatives of those doers to communicate

about realities aimed to coordinate the efforts of members of

C in solving common in C problems.

3.2.3. For humans those doers are mainly mental ones while

communicatives of mental doers can be their IDs or some

representations of their nature, say samples they classify, or

models of those samples.

In [30] it was assumed that mental doers comprise mental

systems having unique IDs and united in nets with nodes

and relationships between them assigned by those IDs.

3.2.4. Mental systems in a variety of scopes are intrinsic for

humans and in a variety of life time periods are formed

genomic or cognitively.

They are backing doings for roots, say consuming energy

and matter of others, or goals induced by roots and varying

in effectiveness with respect to them.

Communicatives of C of certain types represent mental

systems and can be organized into languages L, like English

is organized from IDs of certain mental systems that have

thesauruses comprising mental systems of C, corpuses of the

totalities of IDs, syntacies and semantics of L [30].

Mental systems in the nets of mental doers correspond to

connectivity subnets rooted in the nodes of subsystems of

connectivity subnets.

Mental systems determine classes of equality of realities,

their nodes can be processed for several goals, can be

decomposed or abstracted.

For example, mental systems Factories include nodes of their

stuff, workshops, buildings, etc., and a variety of mental

systems and realities can be equal or match them, be

decomposed or abstracted.

Other aspects in classifying systems include, particularly,

synchronous availability out of their origin in time , say in

past or in present, being causes or their effects,

and equidistant accessibility like the nodes in “star” types

networks.

3.2.5. Effectiveness of mental systems rises by, particularly,

grounding msystems to commonly acknowledged ones like

axioms or rules of logical inferences, eliminating malicious

circles in their representations , and more, being consistent

with , say, cause –effect or originations in time chains of

realities the mental systems represent.

The most powerful mental systems, seemingly, we gain

when provide their constructive models and make them

adequate [30].

4. CONSTRUCTIVE SYSTEMIC

MODELS FOR RGT SOLUTIONS
4.1. Network of abstracts

We construct Network of Abstracts (NA) based on mdoers

defined via interface. Their Structure is based on English

language grammar, particularly Have, Be and Do (HBD)

main dimensions of its verbs [13, 14]. Similar to classes in

OOP, say in Java, HBD model of the mental system

presentation enables abstracts in NA related with Be

(inheritance) and Have (attributes) relations, as well as Do

relation (similar functions and methods of OOP) are

achieved by actions. There are 4 types of abstracts identified:

1) Nuclear/primitive abstacts which serve as ground for

construction of NA, particularly for chess they can be Figure

Color (black, white), Figure Type (king, queen, rook, etc.), X

and Y cords (to define the chess situation on the board) 2)

Composite abstracts which can be composed of other types

of abstracts, can be derived from other composites and can

be virtual (e.g., check concept of chess is virtual and its

specifications are check by knight, check by pawn, etc.), 3)

Sets, which are similar to arrays in OOP, enable definition of

bundles of abstracts of the same type 4) Actions which

consist of composite precondtions and regularities defining

situation updates [14].

Fig. 1 shows the Network of Abstracts, where all 3 types of

HBD relations are presented.

The matching of situations to abstracts in NA is performed

as described in [15]. In RGT Solvers abstracts and situations

are stored in store of abstracts (Fig. 2).

Solver’s processing of situations iteratively triggers the

matching or ablation of the instances of abstracts lying in the

Network of Abstracts, consequently, building the matched

set of abstracts in the Solver. The procedure of composing

abstracts from sub-abstracts represents a classical constraint

satisfaction problem. NA nodes are divided into two

functional categories: filtering and conjunction nodes. The

first ones decide whether to discard or propagate further

matched instances by applying conditions. While, the

conjunction nodes serve as assemblers trying to match

different sets of matched attributes’ instances for generating

a new instance corresponding to the node’s abstract.

Matching algorithm description

Nucleus nodes serve only as filters, Composite nodes are

combining the characteristics of both node types uniting the

instances of attributes and filtering out the ones which

violate the rules. It is necessary to check all possible

combinations of the attributes which are achieved by keeping

the list of partial instances which represent all allowed (by

rules of the abstract) combinations of already arrived sub-

instances. Set nodes are just collecting the same type

elements satisfying the rules described in [16]. Action nodes

are considered matched when their precondition is activated,

which is represented as a composite node.

The matching to virtual abstracts is done as described: they

are being matched by their children (called specifications of

virtual abstracts) when the latter ones get matched, when

they are used as attributes in other abstracts (those are called

usages) they are activated by their parent virtuals.

The presentation and matching also support negation of

abstracts [16].

4.2. Structure of Plans and Goals

Strategies in RGT Solvers are constructed based on goals

and plans [17, 18].

In Solver goals consist of precondition, postcondition which

are composite abstracts depth of goal search tree.

Preconditions are situations for which this goal is applicable.

This basically defines the pattern of situations where goal is

meaningful. For some goals the precondition can be any

situation. Postconditions are situations which appear when

the goal is achieved, e.g., if the goal is “make check with the

queen”, after it is achieved the opponent king is under check

Fig. 1 Network of Abstracts and HBD relations

Fig. 2 Store of abstracts

Fig. 4 Chess board example for

matching demonstration

{"name":"sit_1","elements":[

{"groupid":1,"instances":[

{"type":"X","value":1},

{"type":"Y","value":8},

{"type":"FigureType","value":"0"},

{"type":"FigureColor","value":"0"}

]}

…

{"groupid":34,"instances":[

{"type":"X","value":2},

{"type":"Y","value":4},

{"type":"FigureType","value":"1"},

{"type":"FigureColor","value":"1"}

]},

...

]}

 Fig. 6 Situation presentation in Solver

Fig. 5 Matching process

of queen in the given situation, this can be any situation as

well.

Plans are list of goals sorted with their priorities.

4.2.1. Searching for Strategies based on Plans

Processing of plans for searching strategies on the given

situation is done by the goals defined in the plan. Goals are

processed and the goal with the highest priority which

matches is selected and the optimal moves for it are

suggested (Fig 3).

4.3. Let’s discuss the situation on the chess board in Fig 4, in

Solver it is defined as in

Fig 5.

4.3.1. First level of

matching

Matching starts of the

concepts from the first

group. The algorithm

iterates over the nucleus

instances of the situation

and fires the instances to

the nucleus nodes of the

corresponding types. In

this case it starts from X

instance (value is 1) with

groupid = 1. It finds X

nucleus type node in NA and checks if the value of the

instance satisfies the regulations of the node. As the value is

1, it is fired forward. It also creates partial matches for Field,

Figure, Rook and other types of Figures. Next comes Y = 8

instance of the same groupid = 1, it is being passed to Y

node, which itself adds its instance in the partial matches of

Field, Figure, and all types of Figures, except Pawn (Y=8

doesn't satisfy the rule defined in Pawn), with the same

groupid. Similarly FigureType of the same groupid fires

instance of FigureType nucleus node and registers its

instance to partial match Field with the same groupid.

Finally, FigureColor instance is being fired, which makes

partial match of Field complete, thereby, leads to firing of an

instance of Field forward. Similar procedures are applied to

the rest of the fields.

4.3.2. Second level of matching

Now, let's consider the processing of the second phase

concepts. We shall note, that the matching algorithm works

in depth first fashion, thus, once the nodes are activated they

are fired further and lead to partial/complete matches of

successive nodes.

The activation of FieldUnderCheck is triggered by the

activation of one of its specifications. It has a specification

FieldUnderCheckOfRook which is also virtual and is

specified as a composite abstract that contains a Set abstract

EmptyFields in

it which defined

the line between

two figures, in

this case fields

between rook

and the pawn

and fields

between the

rook and the

knight. Let's

first discuss the

activation of.

Sitaution

processing over

already

activated

figures and

fields triggers activation of 2 EmptyFields with between

rook and the pawn and the rook and the knight. Rest fields

are not added into those EmptyField type abstracts, because

of rules defined in them [16]. On the same level moves by

figures are activated as their preconditions are activated,

more abstracts activate on the next level of those abstracts,

such as FieldUnderCheckOfRook,

FieldUnderCheckOfPawn, and other abstracts. Matching to

next levels is happening similar to this, when a new node is

activated (as said above here abstracts compose of filtering

and conjunction functions).

What follows from the experiment, is that each successive

layer reuses the achievements of the previous ones. As

shown in the image the first level of matching is nucleus

abstracts, such as coords, figure type and color in the case of

chess. Next level is appearing simple knowledge pieces, such

as figure and certain figure types, as well as fields in chess.

Next it comes the composite level where nodes can have

both filtering and conjunction. In the example

FieldUnderCheckOfPawn is an abstract matched on that

level.

The essence of HBD model is to build a shell which would

represent the knowledge using linguistic relations while the

same time will enable automatic matching of the situation to

the existing knowledge. Thereby, the advances in the UNL

are opening perspectives to integrate and enrich the linguistic

relations used in the HBD model and implement more

advanced matching algorithms.

5. CONCLUSION
Systemic approach to problem solving is discussed.

Overview for various mental system models is given,

including parametric, statistic methods, as well as neural

networks are discussed with their advantages and

disadvantages.

Expectations from mental systems are defined and their

constructive models are discussed and some of their

shortcomings are mentioned.

Fig. 3 Block scheme of optimal move searching algorithm

Our approach for modeling constructive mental systems for

RGT class of problems is given with overall abilities

overview. RGT Solvers are able to acquire RGT problems

and provide systemic solutions to them. Mental doers in

RGT Solvers are presented in the Network of Abstracts

which is also able to be matched to situations.

We plan to prove the adequacy of our a/scmds models for

mental behaviors classified by psychologists and

psychiatrists as keys to identifying the wellbeing of humans.

Future development of RGT Solvers is expected to be

developed in the following directions: a) Enhance matching

algorithms with machine learning solutions, b) enhance

mental doers presentation and acquisition with natural

language and UNL bases.

REFERENCES
[1] A. Tikhonov, V. Arsenin, “Methods for solving some

problems”, Science, Moscow, 1974.
[2] E. Pogossian, “Adaptation of combinatorial algorithms”

(in Russian), p. 293, Yerevan, Armenia, 1983.

[3] M. Botvinnik, “About Solving Approximate Problems”,

Moscow: Sov. Radio, 1979.

[4] J. Pitrat, “Consciousness and Conscience, in Artificial

Beings: The Conscience of a Conscious Machine”, ISTE,

London, UK, 2009.
[5] D. Wilkins, “Practical Planning: Extending the Classical

AI Planning Paradigm”, vol. 205, Morgan Kaufmann

Publishers Inc., p. 205. San Francisco, CA, USA, 1988.

[6] B. Stilman, M. Aldossary, “Revisiting Major Discoveries

in Linguistic Geometry with Mosaic Reasoning” Procedia

Computer Science Volume 46, p. 784, 2015.

[7] J. Laird, “The Soar Cognitive Architecture”, MIT Press,

England, 2012.

[8] B. Buchanan, M. Shotcliffe, “Rule-Based Expert

Systems: The MYCIN Experiments of the Stanford Heuristic

Programming Project” Addison-Wesley, Reading,

Massachusetts, 1984.

[9] UNDL Foundation, www.unlweb.net, 2013.

[10] “UNL Specifications”, UNL Center of UNDL

Foundation, 2005.

[11] A. Singhal, “Introducing the Knowledge Graph: Things,

Not Strings”, Official Blog of Google, 2012.

[12] D. Poo, D. Kiong, S. Ashok, “Object-Oriented

Programming and Java”, Springer Science+Business Media,

London, 2008.

[13] E. Pogossian, “On Modeling Cognition”, Computer

Science and Information Technologies (CSIT11), pp. 194-

198, Yerevan, Armenia, 2011.

[14] K. Khachatryan, S. Grigoryan, “Java programs for

presentation and acquisition of meanings in SSRGT games”,

Proceedings of SEUA Annual conference, pp. 127-135,

Yerevan, Armenia, 2013.

[15] K. Khachatryan and S. Grigoryan, “Java programs for

matching situations to the meanings of SSRGT games”,

Proceedings of SEUA Annual conference, pp. 135-141

Yerevan, Armenia, 2013.

[16] S. Grigoryan “Research and Development of

Algorithms and Programs of Knowledge Acquisition and

Their Effective Application to Resistance Problems”, PhD, p

111, Yerevan, Armenia, 2016.

[17] E. Pogossian, V. Vahradyan, A. Grigoryan, “On

competing agents consistent with expert knowledge”,

Lecture Notes in Computer Science, AIS-ADM-07: The

International Workshop on Autonomous Intelligent Systems -

Agents and Data Mining, pp. 229-241, St. Petersburg,

Russia, June 6-7, 2007.

[18] S. Grigoryan, “Structuring of Goals and Plans for

Personalized Planning and Integrated Testing of Plans”,

Mathematical Problems of Computer Science, vol. 43, pp.

62-75, 2015.

[19] H. K. Jabbar, R.Z. Khan, “Methods to avoid over-fitting

and under-fitting in supervised machine learning”,

University of Misan, Misan, Iraq.

[20] G. E. P. Box, “Science and Statistics”, Journal of the

American Statistical Association, Vol. 71, No. 356., pp. 791-

799, 1976.

[21] O. Matan, R. Kiang, C. Stenard, B. Boser, J. Denker, D.

Henderson, R. Howard, W. Hubbard, L. Jackel, Y. Le Cun,

“Handwritten Character Recognition Using Neural Network

Architectures”, AT&T Bell Laboratories, Holmdel, 1990

[22] M. Auli, M. Galley, C. Quirk, G. Zweig,

“Joint language and translation modeling with reccurent

neural network”, EMNLP, 2013.

[23] K. Luk, J. Ball, A. Sharma, “An Application of Artifical

Neural Networks for Rainfall Forecasting”, Mathematical

and Computer Modelling, Vol. 33, Issues 6-7, pp. 683-693,

2001.

[24] LeCun, Yann, Y. Bengio, G. Hinton. "Deep learning."

Nature 521.7553, pp. 436-444, 2015

[25] K Fu, “Syntactic Methods In Pattern Recognition”, p.

322, London, 1974.

[26] H. Marandjian, “A Method of Synthesis of Programs of

Numeric Functions”, Mathematical Problems of Cybernetics

and Computers vol. 26, pp. 5-13, Yerevan, 1986.

[27] E. Pogossian, A. Martirosian, “Learning”, Reference

book on Intellectual Systems. Radio i Svjas Publishing

Company, Moscow, v.2, pp. 206-231, 1990 (in Russian).

[28] E. Pogossian, “Specifying personalized expertise.

International Association for Development of the

Information Society (IADIS)”, International Conference

Cognition and Exploratory Learning in Digital Age

(CELDA 2006), Barcelona, Spain, pp. 151-159, 2006.

[29] E. Pogossian, “Effectiveness Enhancing Knowledge

Based Strategies for SSRGT Class of Defense Problems”,

NATO ASI 2011 Prediction and Recognition of Piracy

Efforts Using Collaborative Human-Centric Information

Systems, pps. 16, Salamanca, Spain, 2011.

[30] E. Pogossian, “Towards Adequate Constructive Models

of Mental Systems”, Computer Science and Information

Technologies (CSIT17), Yerevan, Armenia, 2017.

[31] Hinton, Geoffrey, et al. “Deep neural networks for

acoustic modeling in speech recognition: The shared views

of four research groups” IEEE Signal Processing Magazine

29.6, pp. 82-97, 2012.

[32] E. Pogossian, “On a Transparent Presentation of Written

English Syntax”, 5th Intern. Cognitive Linguistics

Conference, Vrije Universiteit, pp. 209-214, Amsterdam,

July 1996.

