
Dynamic Knowledge Integration into HBD Knowledge
Presentation Model

Sedrak Grigoryan

Division of Computational and Cognitive networks, IPIA, NAS RA
Yerevan, Armenia

e-mail: addressforsd@gmail.com

ABSTRACT
We aim to construct adequate models of knowledge
presentation. Language is one of the main spaces of
knowledge transfer, thus we have developed a model based
on main dimensions of verbs in English “have”, “be”, “do”
(HBD). Below we purpose ways to enhance the existing
HBD model to provide more flexible knowledge acquisition
of it by integration of dynamic types.

Keywords
Knowledge, knowledge presentation, acquisition, dynamic
knowledge.

1. INTRODUCTION
In [1, 2] HBD model, its extensions and knowledge
acquisition are discussed. Current language-based HBD
model implements only 3 main dimensions of language,
particularly “have” and “be” dimensions in nuclear,
primitive, composite and set abstracts, and “do” dimension
in action abstracts.
The model is developed within RGT Solver, an environment
aimed to solve a certain space of problems with the
following requirements for them: a) there are interacting
actors, b) which perform certain type of actions c) in
specified situations d) for achieving identified benefits, and
the space of solution for these problems is represented in a
Reproducible Game Tree (RGT) [3-5]. We study knowledge
acquisition, strategy construction problems for different
RGT problems, particularly for chess, which is a matter of
studies since Shannon’s works in 1950s.
The developed HBD model covers most of RGT knowledge
pieces, particularly chess, however, some concepts which
imply dynamics in them still cannot be adequately acquired.
Particularly, chess concept of “Mate” in [6] does not cover
general “mate” concept implementation. Some kind of
concepts, such as “king cannot escape” required by “mate”
can be defined dynamically. “King cannot escape” in “mate”
is a concept which considers all moves of king and makes
sure for any possible move by king it is still under check.
This implies dynamical checking of each situation change
after king’s move on the given situation.

In [7,8] dynamics is achieved at the strategy construction
stage. Similar approach is suggested in [3] based on goals
and plans and was integrated into RGT Solver in [5].

However, integration of dynamic knowledge into HBD
model essentially improves the knowledge acquisition
process. The main pending questions to answer are:
a. How to construct and integrate dynamic abstracts
(DA)?
b. How does the matching apply to dynamic
abstracts?
In the following sections we will try to answer these
questions.

2. CONSTRUCTION OF DYNAMIC
ABSTRACTS AND THEIR
INTEGRAION
We aim to construct a dynamic type of abstract which will
be able to define and match RGT knowledge of dynamic
types, such as ‘king cannot escape’ and integrate them into
HBD model of RGT Solver.

As the image describes “King can’t escape” concept could
be defined as dynamic:
1. Since this type of knowledge implies a tree
construction in it and in any final situation the same
condition needs to be satisfied, thus, the abstract will have a
precondition for the initial tree node and postcondition for
the final situations. Thus, the main attributes of dynamic
abstracts will be precondition and postcondition, both
composite types [2], can include any type of precondition or
postcondition concepts. The difference between the actions
and dynamic abstracts is that actions suggest a situation
transformation and get to new situations after their
applications, while dynamic abstracts only search for certain
RGT knowledge in the current situation.
2. The depth of tree is usually small, but can vary
from one concept to another, e.g., “king cannot escape”
concept requires only one move depth checking, while other
dynamic concepts, such as “perpetual check” may require a

Fig. 2. Dynamic concept “King can’t escape” in HBD model

Fig. 1. “King can’t escape” dynamic concept

mailto:grigoryan.arthur@gmail.com

deeper search. Thus, we also need to specify the max tree
depth in the dynamic abstract.
3. Precondition and postcondition abstracts can
depend on each other, but cannot be unspecified, in other
words dynamic abstracts cannot be virtual [2]. Some
dynamic abstracts may require checking of values against
initial situations, thus, dependencies between precondition
and postcondition are allowed, but virtuality are not allowed,
because concepts cannot be virtual, but at the same time both
precondition and postcondition abstracts can be usages of
virtual abstracts.
4. Based on previous requirements and rules, we
reveal that a) dynamic abstracts will contain ‘have’ type of
relation to their attributes and have no parent, b) dynamic
abstracts can be attributes for other composite abstracts.
Basically the above described rules are complete for
definition of dynamic abstracts. Below pseudocode for their
creation is brought:

function createDynamicConcept() {
 input: abstractData
 output DynamicAbstract
 name = getNameFromData(abstractData);
 Abstract duplicate = getAbstractFromLibrary(name);
 Boolean isUpdate = false;
 if(duplicate != null) {
 isUpdate = true;
 if(duplicate.TYPE != DYNAMIC){
 throw NameDuplicationException(name);
 }
 }
 String preconditionName =
getPreconditionName(abstractData);
 Composite precondition = getAbstract(preconditionName);
 String postconditionName =
getPostconditionName(abstractData);
 Composite postcondition =
getAbstract(postconditionName);
 Integer depth = getTreeDepth(abstractData);
 DynamicAbstract abs = createDynamicConceptInternal(
 preconditionName, postConditionName, depth);
 addDynamicAbstractToLibrary(abs);
 return abs;
}

3. MATCHING OF DYNAMIC
ABSTRACTS
Dynamic abstracts are different from other abstracts in their
form, thus, their matching requires a different approach [9].
Thus, dynamic abstracts cannot be matched with a regular
pattern matching approach as it is done for other types.
In [5] matching of goals and plans is discussed. As goals are
similar to DAs their matching will be also done that way,
with some differences. Overall matching of abstracts is done
with several phases.

a. First all the regular matching is done as described
in [9].

b. All of DAs which have active precondition
abstracts in phase a.) (in the case of “king cannot escape”
activation of ‘king’ is expected), a tree is generated based on
max allowed depth for the given DAs similar to construction
of tree for goals. All the end nodes of the tree, i.e., all the
output situations have to match the postcondition. In the case
of ‘king cannot escape’ in all of the ending situations king
must be under check. This means abstract is matched.
c. After the above step requirements are satisfied and
dependencies in the dynamic abstract are satisfied (if there
are any), abstract is being activated. Activation of DAs
triggers activation of other abstracts connected to the DA,
which could not be activated at phase a. because of the
missing attribute activated in b. which can itself trigger
activation of new DAs.
d. Above a., b., c., steps are performed sequentially
until no new abstract is being activated. At the end of this
step we have the complete matching process for the given
input situation.
4. EXPERIMENTING THE UPDATED
HBD MODEL IN SOLVER
For experimenting
the extended with
dynamic abstracts
HBD model
adequacy we
consider “rook
against king”
endgames, where
“mate” concept is
used, thus, also
dynamic abstracts
“king cannot escape”
and “king has no
defense” are required.
In contrast to [6],
“mate” is defined as a
composition “king
under check”, “king
cannot escape” and
“king has no
defense”, where
“check” concept
definition is the
same, while “king
cannot escape” and
“king has no defense”
abstracts are defined
as dynamic ones.
“King cannot escape”
is defined as a
dynamic abstract
where precondition is
“king” and
postcondition is
“check” for the king
identified in
precondition and its
position is changed
to identify that this
was a move by king
with the depth of
only one. “King has
no defense” has a
precondition of
“check” and
postcodition is
“check” where king’s
position is not

Fig. 3. Matching of dynamic abstracts

Fig. 4. "King cannot escape" in a
rook endgame situation

Fig. 5. “King has no defense" in
a rook endgame situation

Fig. 6. "Rook against king"
endgame

changed, which means other pieces are moved, not king and
king is still under check.
The plan for `rook against king`, as described in [5], is as

follows: 1) Put mate, 2)
Avoid stalemate, 3)
Escape rook from
attack, 4) Push king to
the edge, 5) Make a
waiting move, 6) Bring
own king closer to the
opponent king.
Let’s consider the
situation shown in Fig.
6. The plan performs as
described in [5], and
after several moves we
get to the position
shown in Fig. 7. In this
situation “put mate”
goal can be achieved,

as the “mate” after rook’s move a8 is detected: for black
king “check”, “king cannot escape” and “king has no
defense” abstracts are activated and “mate” is matched.
4. CONCLUSION
1. Structure of dynamic abstract is defined, where
abstracts consist of precondition, which is a composite
abstract describing the initial situation to match the
knowledge, postcondition, which is a composite abstract
describing the final situations for the knowledge (e.g.,
postcondition for “king cannot escape” is that king is still
under check after any move by king) and depth of tree. This
kind of knowledge is similar to goals with the difference that
it is integrated into the network of abstracts, while goals just
refer to abstracts.
2. Algorithm to match these abstracts to the given
situations is developed. The algorithm works with several
iterations with two main steps, where first step is the regular
matching process and the second step is dynamic abstracts
matching. DA is considered as matched if precondition is
matched and for all of final situations in the generated game
tree of that abstract postcondition is matched.
3. Adequacy of these types of abstracts is
experimented with “rook against king” situations, where
‘mate’ concept is defined using dynamic abstract ‘king
cannot escape’. Based on the defined knowledge Solver is
able to solve the given ‘rook against king’ endgame
situations adequately.
The future development of HBD model requires
enhancement of the model to unite all the existing
knowledge types, including plans and goals. Also generation
of goals from different abstracts, including dynamic ones
and generation of plans is in the coming steps of
development.
5. ACKNOWLEDGEMENTS
Author expresses his deep gratitude to Professor Edward
Pogossian for supervising this work and Vanand Mkrtchyan
for support in development of Dynamic Abstracts definition
interface in Solver.
REFERENCES
[1] E. Pogossian, “On Modeling Cognition” Computer
Science and Information Technologies (CSIT11), pp. 194-
198, Yerevan, Sept.26-30, 2011.
[2] K. Khachatryan and S. Grigoryan, “Java programs for
presentation and acquisition of meanings in SSRGT games”,
Proceedings of SEUA Annual conference, pp. 127-135,
Yerevan, Armenia, 2013.
[3] E. Pogossian, V. Vahradyan and A. Grigoryan, “On
competing agents consistent with expert knowledge”,

Lecture Notes in Computer Science, AIS-ADM-07: The
International Workshop on Autonomous Intelligent Systems -
Agents and Data Mining, pp. 229-241, St. Petersburg,
Russia, June 6-7, 2007.
[4] E. Pogossian, “Specifying Personalized Expertise”
International Association for Development of the
Information Society (IADIS): International Conference
Cognition and Exploratory Learning in Digital Age
(CELDA 2006), pp 151-159, Barcelona, Spain Dec 8-10,
2006
[5] S. Grigoryan, “Structuring of Goals and Plans for
Personalized Planning and Integrated Testing of Plans”,
Mathematical Problems of Computer Science, vol. 43, pp.
62-75, 2015.
[6] K. Khachatryan and V. Vahradyan, "Graphical Language
Interpreter Unified for SSRGT Problems and Relevant
Complex Knowledge", International Conference in
Computer Sciences and Information Technologies, pp. 178-
182, Yerevan, Armenia, 2011.
[7] J. Laird, “The Soar Cognitive Architecture”, MIT press,
England, 2012.
[8] M. Veloso, “PDDL by Example”, Carnegie Mellon
University. 2015.
[9] K. Khachatryan and S. Grigoryan, “Java programs for
matching situations to the meanings of SSRGT games”,
Proceedings of SEUA Annual conference, pp. 135-141
Yerevan, Armenia, 2013.

Fig. 7. Situation where "mate"
concept with dynamic attributes

is detected

