
Preliminary Particles Model of Unconstrained Examination

Timetabling and Its Optimization Using Neural Networks

 Suren Khachatryan

American University of Armenia

Yerevan, Armenia

e-mail: skhachat@aua.am

Nareh Salmasian

American University of Armenia

Yerevan, Armenia

nareh_salmasian@edu.aua.am

ABSTRACT
Construction of feasible examination timetables implies

strong interaction between the involved exams. We propose

a dynamical model of unconstrained examination

timetabling, where exams are represented by interacting

particles cyclically moving over the timeslots. A simple

interaction rule is adopted – move to the next slot, if in a

clash, and the corresponding evolutionary operators are

derived. The model is applied to the Toronto benchmark

problems, and evolution of the resulting systems is studied in

terms of the number of clashes. Based on the observed main

properties, a Propagating Particles Algorithm of an

Academic Time Tabling (bi-PAT) is formulated without

explicitly drawing on search or optimization paradigms. The

algorithm is compared with 3 other methods originating from

analogies with natural science phenomena, as well as 5

combinatorial algorithms. Competitive performance of bi-

PAT with the best algorithms is observed in case of

problems of moderate size. The reasons of significant

deviation from the best results in case of large problems are

discussed. In the last section a neural network-based

optimization strategy is proposed.

Keywords
Scheduling, dynamical systems, neural networks.

1. INTRODUCTION
Timetabling problems generally and educational timetabling

specifically have been subjects of active studies for many

decades due to their high practical value. Different

formulations of educational timetabling problems exist. In

the survey of automated timetabling [1] they are classified

into three main types – school, course and examination

timetabling. It is added, however, that such division is not

strict, and hybrid cases can appear in practice. Differences

between the mentioned types are discussed in [2]. In the

present paper we consider an unconstrained examination

timetabling problem with the only objective to avoid

students taking different exams at the same time. Usually,

additional hard and soft constraints are imposed to such time

tables. Several important examples are enlisted in [3].

The algorithms and research directions are summarized in an

in-depth survey of examination timetabling methodologies

[3]. Ordering heuristic approaches originate from the

fundamental work [4], in which timetabling is treated from a

graph coloring point of view. Five sorting strategies are

discussed and compared in [5]: by saturation degree – the

number of available timeslots [6]; by largest degree – the

number of conflicts; by weighted largest degree – the

number of students in conflict; by largest enrolment; and,

finally, by random ordering. It is shown that, generally,

sorting by saturation degree combined with backtracking

strategy leads to more compact schedules and requires less

computing time.

Combinatorial algorithms developed by analogies with

natural science phenomena prove to be reasonably

productive. Simulated annealing is a local search method

widely used in scheduling and timetabling. It originates from

an equation of state calculation algorithm for systems

composed of interacting molecules with spherically

symmetric potential field [7]. A hybrid method combining

simulated annealing and constraint programming is proposed

in [8]. Being tested on the same data the approach results in

somewhat longer unconstrained timetables than those

constructed in [5].

Genetic algorithms mimic natural evolutionary processes and

the principles of genetics. Possible solutions are represented

as chromosomes, and new chromosomes are generated by

crossover and mutation mechanisms. Applications of genetic

algorithms to educational timetabling problems are

summarized in a brief survey [9]. An algorithm with a linear

linkage encoding representation scheme is suggested in [10]

for solving the graph coloring and exam timetabling

problems. Another class of methods inspired by a biological

concept consists of ant colony algorithms that behave similar

to ants in their search for the shortest path to food. Such an

approach is developed in [11] and used as an evidence that

ant colony optimization should not be limited to routing

problems, though being firmly focused to the latter. It is

shown that proper configuration puts the algorithm among

the best methods applied to the same unconstrained problems

as in [5].

Timetabling implies strong interaction between the exams

through clashes. The present work aims at modelling of this

interaction and construction of the corresponding dynamical

system. The main goal is to show that adequate dynamical

description can lead to feasible solutions without explicitly

drawing on search or optimization heuristics.

2. DYNAMICAL MODEL
Let us consider construction of a feasible examination time

table – given N class lists, schedule the corresponding N

exams within S timeslots in a clash-free way. Two exams

clash, if they are scheduled for the same slot and there is at

least one student included in both class lists. Let us then

consider the exams as a 1D dynamical system with the

enumerated timeslots being the discrete periodic coordinate

of period S, and adopt a simple interaction rule – if in a

clashing state, an exam shifts to the next slot. Formally, we

introduce a force operator Fk that acts on the k-th exam and

has the following form:

Fk(tk) = (tk + b) mod S (1)

where tk is the current timeslot of the k-th exam (0 ≤ tk < S

and 0 ≤ k < N); and binary constant b is equal to 1, if the

exam is in a clashing state at tk, and 0 – otherwise. Generally,

operators Fk do not commute and, therefore, exam

numbering matters. To allow moves of arbitrary depth, we

also consider integer powers of Fk:

Fk
m(tk)Fk Fk… Fk m times = (tk+c) mod S, (2)

where c is the number of successive timeslots starting from

tk, for which exams clashing with the k-th one are scheduled

(0 ≤ c ≤ m). Successive action of these operators will

determine the evolution of the entire system we will be

tracking down in terms of changes in the number of clashes.

Therefore, we introduce parameterized cumulative

evolutionary operators E of the following form:

d
N

k
k

m
k tdm














 





1

0

)(),(FE , (3)

where m and d >> 1 represent a mode and duration,

respectively. In expanded terms, E(m,d) shifts in succession

each of N exams up to m modulo S slots forward subject to

clashes and repeats this cycle d times.

Figure 1 illustrates the action of E(m,d) on real-life timetable

examples taken from the Toronto dataset [3]. The overall

number of clashes left in the system after each of d iterations

is plotted against the mode duration d. In all cases exams are

initially scheduled for the first timeslot.
a) E(1, 1000)

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000

duration

c
la

s
h

e
s

b) E(11, 1000)

0

50

100

150

200

0 200 400 600 800 1000

duration

c
la

s
h

e
s

c) E(25, 1000)

0

20

40

60

80

100

0 200 400 600 800 1000

duration

c
la

s
h

e
s

`

d) E(1, 1000)

0

10000

20000

30000

40000

50000

0 200 400 600 800 1000

duration

c
la

s
h

e
s

e) E(11, 1000)

0

200

400

600

0 200 400 600 800 1000

duration

c
la

s
h

e
s

f) E(18, 1000)

0

50

100

150

200

250

300

0 200 400 600 800 1000

duration

c
la

s
h

e
s

Figure 1. Examples of E(m,d) cumulative operators

Figures 1a, 1b and 1c correspond to “ear-f-83.stu” data file –

a relatively small timetable with 190 exams, 24 slots and

9586 clashes in the initial state, while Fig. 1d, 1e and 1f –

“car-f-92.stu” with 543 exams, 32 slots and 40610 clashes.

They show that the systems pass through an initial transient

stage followed by a steady-state periodic phase. Three mode

types can be distinguished for the given duration d: periodic

modes dominated by steady-state phase dtransient << dsteady-state

(Fig. 1a and 1d); quasi-periodic modes effectively limited to

the transient phase dtransient  d (Fig. 1b, 1c and 1e); and

mixed modes with comparable stages dtransient  dsteady-state

(600 vs. 400 iterations in Fig. 1f). Any superposition of

E(m,d) operators that constructs a clash-free examination

timetable will identify a timetabling model. Particularly, the

model can be reduced to a single operator.

3. BI-PAT ALGORITHM
The current work is based on the Toronto benchmark dataset

summarized in Table 1. The problems are sorted by the

maximal number of clashes – the main measure of

complexity. To reveal the basic properties of E(m,d), we

schedule all the exams of the given problem for the first

timeslot – the initial state, and separately apply E(m,1000)

for each of 1 ≤ m < S. Figure 2 depicts the minimal number

of clashes as a function of m for 8 relatively small problems

from Table 1. Data points corresponding to periodic and

mixed modes are in white, to quasi-periodic ones – in black.

There can be drawn certain observations connecting the

values of m with the mode type. If m and S are co-prime,

then the corresponding modes are quasi-periodic. The only

exception is m = 2, where the steady-state periodic phase is

always present, at least for duration d = 1000, even if S is

odd. All other modes are in resonance with S and, therefore,

are either periodic or mixed. Particularly, if m is a factor of

S, then the corresponding modes are strictly periodic.

Secondly, there may be quasi-periodic modes that construct

feasible timetables of the given problem. We call them

feasible modes. Obviously, duration of the feasible modes is

shorter for simpler problems.

Table 1. Toronto Benchmark Dataset

Problem Exams Students

Clash

density

Max

clashes Timeslots

hec-s-92 81 2823 20% 2726 18

sta-f-83 139 611 14% 2762 13

ute-s-92 184 2749 8% 2860 10

lse-f-91 381 2726 6% 9062 18

yor-f-83 181 941 27% 9412 21

ear-f-83 190 1125 29% 9586 24

kfu-s-93 461 5349 6% 11786 20

tre-s-92 261 4360 18% 12262 23

rye-s-93 486 11483 7% 17744 23

car-f-92 543 18419 14% 40610 32

uta-s-93 622 21266 13% 48498 35

car-s-91 682 16925 13% 59628 35

pur-s-93 2419 30029 3% 164598 42

0

50

100

150

200

250

300

350

2 3 4 5 6 7 8 9 1011 1213 1415 1617 1819 2021 2223

mode

M
in

 n
u

m
b

e
r

o
f

c
la

s
h

e
s

 1

ute-s-92

hec-s-92

ear-f-83

lse-f-91

kfu-s93

yor-f-83

tre-s-92

rye-s-93

Figure 2. Dependence of the minimal number of clashes on modes

(d = 1000) in small Toronto benchmark problems.

Assuming there is a solution for the given number of

timeslots S, the obtained results allow formulating a modal

version of a Propagating Particle Algorithm of an Academic

Time Tabling – bi-PAT, as follows:

1. Construct the initial schedule by assigning all exams to

the first timeslot.

2. Select a sufficiently large value of d and apply different

E(m,d) operators to the initial schedule, where m and S

are mutually prime numbers and 2 < m < 2S.

3. If none of the applied operators constructs a feasible

timetable, double d and repeat the step 2.

Implementation of bi-PAT in this way may require

significantly long duration, since no upper bound for the

number of iterations d is explicitly specified. For example, d

= 40010 for lse-f-91 problem; and d = 1000000 is not

sufficient for construction of a feasible car-f-92 timetable –

the first large problem in Table 1. It is, therefore, important

to consider superposition of different modes. Let us

introduce two modal characteristics – the mean number of

clashes C0 averaged over the entire duration and the

amplitude of periodic oscillations or quasi-periodic

fluctuations A. Numerical experiments revealed the

following main properties:

 Expectedly, C0 practically does not depend on d and is a

decreasing function of m, 1 ≤ m < S.

 Generally, periodic modes oscillate around lower mean

than quasi-periodic ones: C0periodic < C0quasi-periodic.

Amplitudes of periodic oscillations, however, are smaller

than the mean by at least an order of magnitude: Aperiodic <<

C0periodic. Therefore, in periodic modes the minimal number

of clashes C0periodic - Aperiodic does not vanish, unless the

mean is of order of unity.

 Unlike periodic modes, amplitudes of quasi-periodic

fluctuations depend on duration, and for sufficiently large

d can become comparable with the mean, thus

considerably minimizing the number of clashes (Fig. 1b)

or completely resolving them (Fig. 1c).

Aiming at bringing together all positive tendencies of the

enlisted properties, we come up with an alternative

formulation of bi-PAT – its cumulative version:

1. Select a value of d, large enough to enter steady-state

phase of periodic modes;

2. Construct the initial schedule by assigning all exams to

the first timeslot, and apply E(1,d);

3. In a loop for each of m < S modes apply E(m,d) to the

schedule that minimized clashes during the previous

iteration E(m-1,d).

As an example, the solution of hec-s-92 problem is depicted

in Fig. 3. In all E(m,d) operators the same number of

iterations d = 1000 is used. For each of them the state with

minimal clashes was chosen as the initial schedule for the

next one. Vertical bounds indicate the resulting mode

duration. Figure 3 shows that the superposition of the modes

adds steadily decreasing behavior to system’s evolution.

0

20

40

60

80

100

0 300 600 900 1200 1500 1800

duration

c
la

s
h

e
s

Figure 3. Cumulative bi-PAT applied to hec-s-92 timetable.

The vertical lines indicate the bounds of successive modes.

Normally, the overall duration of the cumulative version is

much longer that the shortest feasible mode. In some cases,

however, reversed situation is observed.

4. TESTING RESULTS
One of the main objectives of the Toronto dataset is to

minimize the number of timeslots needed for construction of

unconstrained timetables [3]. We compare bi-PAT with the

best results achieved by several other methods in Table 2.

The five sequential algorithms with backtracking [5] are

denoted as follows: LD – sorting by the largest degree, SD –

by the saturation degree, WD – by the weighted largest

degree, LE – by the largest enrolment, and RO – random

ordering. The simulated annealing hybrid method [8]

denoted as SA, the genetic algorithm [10] – GA, and the ant

colony optimization method [11] – AC, are also included.

The records are divided into two main parts – the first 9

small problems with less than 20000 clashes each, and the

remaining 4 large problems.

Table 2. Minimal number of timeslots by different approaches

Problem LD SD WD LE RO SA GA AC bi-PAT

hec-s-92 18 17 17 17 17 18 17 17 17

sta-f-83 13 13 13 13 13 13 13 13 13

ute-s-92 10 10 10 10 10 11 10 10 10

lse-f-91 17 17 17 17 17 18 17 17 17

yor-f-83 20 20 20 19 20 23 20 19 21

ear-f-83 22 22 22 22 22 24 23 22 23

kfu-s-93 19 19 19 20 19 21 20 19 20

tre-s-92 22 20 20 22 22 21 21 20 23

rye-s-93 21 21 22 22 22 22 23 21 22

car-f-92 31 28 30 31 32 31 36 28 35

uta-s-93 33 32 33 33 34 32 38 30 38

car-s-91 32 28 30 31 32 30 36 28 38

pur-s-93 36 35 38 38 N/A N/A N/A N/A 48

All smaller timetables have been constructed for timeslots

enlisted in Table 1 by both modal and cumulative versions of

bi-PAT. However, there are only two cases among them that

correspond to the best solutions – sta-f-83 and ute-s-92 with

13 and 10 timeslots, respectively. To construct timetables

with less slots, we apply customized versions of bi-PAT,

where different combinations of the E(m,d) operators are

empirically selected and tried instead of the cumulative

superposition. Here again, the state with minimal number of

clashes of the previous mode becomes the initial one for the

next evolutionary operator. Particularly, cyclic application of

E(15,1000), E(16,1000), E(18,1000) and E(19,1000)

constructs hec-s-92 timetable of 17 slots. Another

customized bi-PAT improves rye-s-93 timetable: E(21,2000)

 E(11,10)3  E(21,100). Consideration of longer duration

may be an alternative strategy. For example, ear-f-83

timetable of 24 slots is constructed by E(25,889), while the

one with 23 timeslots – by E(25,1227). Similarly, lse-f-91

timetable of 18 slots is constructed by cumulative bi-PAT

with d = 1000, while the one with 17 timeslots requires 10

times more iterations.

The best results on the Toronto data are achieved by SA [5]

and AC [11]. It follows from Table 2 that bi-PAT

demonstrates reasonable performance on the relatively small

problems. It matches the best results reported for the 4

smallest problems [5, 10-11]. As for the remaining 5 small

problems, it is slightly worse than the sequential algorithms

[5] and the ant colony method [11], but competitive with SA

[8] and GA [10]. We find it important to emphasize that all

the mentioned approaches are explicitly based on search or

optimization paradigms, while the versions of bi-PAT reflect

on evolution of the dynamical models (3).

Different behavior of the dynamical models is observed in

case of the 4 large timetables with more than 40000 clashes.

Only cumulative bi-PAT is applied to these problems, since

the duration of feasible modes (if any) quickly grows with

the problem complexity. The results obtained for car-f-92,

uta-s-93 and car-s-91 timetables agree with those achieved

by GA [10]. Both methods, however, are significantly

outperformed by other approaches [5, 8, 11]. The largest

timetable pur-s-93 is a special case. It requires 48 timeslots

to construct a feasible timetable by cumulative bi-PAT with

d = 1000, which is essentially inferior to the sequential

algorithms excluding the one of random ordering [5].

5. PERFORMANCE OPTIMIZATION
The amount of iterations remains unspecified in both

versions of bi-PAT. To enhance speed it up, different

combinations of E(m,d) operators may be applied. Their

successful empirical search, however, cannot be practically

implemented in large timetables. Meantime, the modal

version quickly converges to sub-optimal solutions, where

the number of clashes is minimized. For example, no

feasible solution is found within d = 1000 iterations on Fig.

1b, but in around d = 600 iterations a sub-optimal solution is

found with only 12 clashes.

Based on sub-optimal solutions we propose below an

optimization method using, as an example, the smallest

timetable hec-s-92 – in the best case it should be constructed

within 17 slots. We supplement the system with a Hopfield

network – a one-layer neural network that has as many N

binary neurons as many exams are included in the timetable

[12]. Thus, it represents a single timeslot with i-th exam

scheduled for it, if the corresponding i-th neuron has value 1.

We apply E(18,100). In less than d = 100 iterations a sub-

optimal solution with only 2 clashes is found. Since the

clashes are counted in pairs, all-but-one slots appear in

feasible states. Each such slot represents a possible large

clash-free clique of exams and, therefore, is used in the

training set of the Hopfield network. The clashing slot

generates two more training configurations with the first

clashing exam removed from the first one and the second

clashing exam – from the second one. If using an arbitrary,

not sub-optimal, timetable with many clashes per slot, the

inclusion of clashing slots into the training set becomes

inefficient and the cliques drastically shrink.

Once the network is trained, it is used for generation of a

more optimal initial state. As before, all exams are initially

scheduled for the first slot – this is the first input to the

trained network. All exams from the output are left in this

slot and others are moved to the second one – this is the

second input to the network. The process continues until the

last slot. It is not guaranteed that the generated initial state is

feasible, but the subsequent application of pi-PAT will

require shorter duration.

6. CONCLUSION
In the present work we treat examination timetabling as a

system of interacting particles and suggest an iterative and

spatially periodic multimodal model of the interaction

between the exams through the parameterized evolutionary

operators E(m,d) (1)–(3). Originating from an intuitive

concept of moving away from clashing counterparts, the

model exhibits realistic behavior with certain similarities to

dynamical systems governed by laws of classical mechanics.

Particularly, we observe such well-known and studied

phenomenon as resonant orbits or periodic modes, where the

period of motion of individual particles m has common

divisors with the problem’s spatial period S – the number of

available timeslots. Meantime, experiments with the Toronto

benchmark problems demonstrate that quasi-periodic modes

with co-prime m and S are closely related to the construction

of feasible timetables. Each of 9 relatively small problems

has at least one quasi-periodic mode of evolution that

resolves all the clashes. Based on the revealed general

properties, the Propagating Particles Algorithm of an

Academic Time Tabling – bi-PAT, is formulated in two

versions. In terms of constructing timetables of minimal

length, it can compete with other approaches, when applied

to problems of moderate size.

The main weakness of the algorithm is the unbounded

specification of the duration parameter d. To optimize the

search, we consider states in timeslots as patterns and

propose using a Hopfield network for pattern matching. A

strategy of the network training is presented based on the

hec-s-92 case-study from the Toronto benchmark dataset.

For more detailed formulation, we are currently developing

an integrated environment that will combine the

implementation of bi-PAT algorithm with the Hopfield

network. Having this tool, we will present in the next papers

the testing results and draw comparisons with other methods.

REFERENCES
[1] A. Schaerf, “A survey of automated timetabling”,

Artificial Intelligence Review, 87-127, 13(2), 1999.

[2] B. G. C. McCollum, “A perspective on bridging the gap

between theory and practice in university timetabling”, in

Practice and Theory of Automated Timetabling: Selected

Papers from the 6th Int. Conf., Springer Lecture Notes in

Computer Science, 3-23, 3867, 2007.

[3] R. Qu, E. K. Burke, B. McCollum, L. T. G. Merlot, S. Y.

Lee, “A survey of search methodologies and automated

system development for examination timetabling”, Journal

of Scheduling, 55-89, 12 (1), 2009.

[4] D. J. A. Welsh, M.B. Powell, “The upper bound for the

chromatic number of a graph and its application to

timetabling problems”, The Computer Journal, 41-47, 11,

1967.

[5] M.W. Carter, G. Laporte, S.Y. Lee, “Examination

timetabling: algorithmic strategies and applications”, Journal

of Operational Research Society, 373-383, 47 (3), 1996.

[6] D. Brelaz, “New methods to colour the vertices of a

graph”, Communications of the Association for Computing

Machinery, 251-256, 22, 1979.

[7] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A.

H. Teller, “Equation of state calculations by fast computing

machines”, The Journal of Chemical Physics, 1087-1092, 21

(6), 1953.

[8] L. T. G. Merlot, N. Boland, B. D. Hughes, P. J. Stuckey,

“A hybrid algorithm for the examination timetabling

problem”, in Practice and Theory of Automated Timetabling:

Selected Papers from the 4th Int. Conf., Springer Lecture

Notes in Computer Science, 207-231, 2740, 2003.

[9] D. Corne, P. Ross, H. Fang, “Evolutionary timetabling:

practice, prospects and work in progress”, in Proceedings of

UK Planning and Scheduling SIG Workshop, 726-731, 1994.

[10] O. Ulker, E. Ozcan, E. E. Korkmaz, “Linear linkage

encoding in grouping problems: applications on graph

colouring and timetabling”, in Practice and Theory of

Automated Timetabling: Selected Papers from the 6th Int.

Conf., Springer Lecture Notes in Computer Science, 347-

363, 3867, 2007.

[11] K. A. Dowsland, J. M. Thompson, “Ant colony

optimization for the examination scheduling problem”, The

Journal of the Operational Research Society, 426-438, 56,

(4), 2005.

[12] R. Kruse, Ch. Borgelt, F. Klawonn, Ch. Moewes, M.

Steinbrecher, P. Held, “Computational Intelligence”,

Springer, 2011.

