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ABSTRACT 
Construction of feasible examination timetables implies 

strong interaction between the involved exams. We propose 

a dynamical model of unconstrained examination 

timetabling, where exams are represented by interacting 

particles cyclically moving over the timeslots. A simple 

interaction rule is adopted – move to the next slot, if in a 

clash, and the corresponding evolutionary operators are 

derived. The model is applied to the Toronto benchmark 

problems, and evolution of the resulting systems is studied in 

terms of the number of clashes. Based on the observed main 

properties, a Propagating Particles Algorithm of an 

Academic Time Tabling (bi-PAT) is formulated without 

explicitly drawing on search or optimization paradigms. The 

algorithm is compared with 3 other methods originating from 

analogies with natural science phenomena, as well as 5 

combinatorial algorithms. Competitive performance of bi-

PAT with the best algorithms is observed in case of 

problems of moderate size. The reasons of significant 

deviation from the best results in case of large problems are 

discussed. In the last section a neural network-based 

optimization strategy is proposed. 
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1. INTRODUCTION 
Timetabling problems generally and educational timetabling 

specifically have been subjects of active studies for many 

decades due to their high practical value. Different 

formulations of educational timetabling problems exist. In 

the survey of automated timetabling [1] they are classified 

into three main types – school, course and examination 

timetabling. It is added, however, that such division is not 

strict, and hybrid cases can appear in practice. Differences 

between the mentioned types are discussed in [2]. In the 

present paper we consider an unconstrained examination 

timetabling problem with the only objective to avoid 

students taking different exams at the same time. Usually, 

additional hard and soft constraints are imposed to such time 

tables. Several important examples are enlisted in [3]. 

 

The algorithms and research directions are summarized in an 

in-depth survey of examination timetabling methodologies 

[3]. Ordering heuristic approaches originate from the 

fundamental work [4], in which timetabling is treated from a 

graph coloring point of view. Five sorting strategies are 

discussed and compared in [5]: by saturation degree – the 

number of available timeslots [6]; by largest degree – the 

number of conflicts; by weighted largest degree – the 

number of students in conflict; by largest enrolment; and, 

finally, by random ordering. It is shown that, generally, 

sorting by saturation degree combined with backtracking 

strategy leads to more compact schedules and requires less 

computing time. 

 

Combinatorial algorithms developed by analogies with 

natural science phenomena prove to be reasonably 

productive. Simulated annealing is a local search method 

widely used in scheduling and timetabling. It originates from 

an equation of state calculation algorithm for systems 

composed of interacting molecules with spherically 

symmetric potential field [7]. A hybrid method combining 

simulated annealing and constraint programming is proposed 

in [8]. Being tested on the same data the approach results in 

somewhat longer unconstrained timetables than those 

constructed in [5].  

 

Genetic algorithms mimic natural evolutionary processes and 

the principles of genetics. Possible solutions are represented 

as chromosomes, and new chromosomes are generated by 

crossover and mutation mechanisms. Applications of genetic 

algorithms to educational timetabling problems are 

summarized in a brief survey [9]. An algorithm with a linear 

linkage encoding representation scheme is suggested in [10] 

for solving the graph coloring and exam timetabling 

problems. Another class of methods inspired by a biological 

concept consists of ant colony algorithms that behave similar 

to ants in their search for the shortest path to food. Such an 

approach is developed in [11] and used as an evidence that 

ant colony optimization should not be limited to routing 

problems, though being firmly focused to the latter. It is 

shown that proper configuration puts the algorithm among 

the best methods applied to the same unconstrained problems 

as in [5]. 

 

Timetabling implies strong interaction between the exams 

through clashes. The present work aims at modelling of this 

interaction and construction of the corresponding dynamical 

system. The main goal is to show that adequate dynamical 

description can lead to feasible solutions without explicitly 

drawing on search or optimization heuristics.  

 

2. DYNAMICAL MODEL 
Let us consider construction of a feasible examination time 

table – given N class lists, schedule the corresponding N 

exams within S timeslots in a clash-free way. Two exams 

clash, if they are scheduled for the same slot and there is at 

least one student included in both class lists. Let us then 

consider the exams as a 1D dynamical system with the 

enumerated timeslots being the discrete periodic coordinate 

of period S, and adopt a simple interaction rule – if in a 

clashing state, an exam shifts to the next slot. Formally, we 

introduce a force operator Fk that acts on the k-th exam and 

has the following form: 

Fk(tk) = (tk + b) mod S (1) 

where tk is the current timeslot of the k-th exam (0 ≤ tk < S 

and 0 ≤ k < N); and binary constant b is equal to 1, if the 

exam is in a clashing state at tk, and 0 – otherwise. Generally, 

operators Fk do not commute and, therefore, exam 

numbering matters. To allow moves of arbitrary depth, we 

also consider integer powers of Fk: 

Fk
m(tk)Fk Fk… Fk m times = (tk+c) mod S, (2) 



where c is the number of successive timeslots starting from 

tk, for which exams clashing with the k-th one are scheduled 

(0 ≤ c ≤ m). Successive action of these operators will 

determine the evolution of the entire system we will be 

tracking down in terms of changes in the number of clashes. 

Therefore, we introduce parameterized cumulative 

evolutionary operators E of the following form: 
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where m and d >> 1 represent a mode and duration, 

respectively. In expanded terms, E(m,d) shifts in succession 

each of N exams up to m modulo S slots forward subject to 

clashes and repeats this cycle d times. 

 

Figure 1 illustrates the action of E(m,d) on real-life timetable 

examples taken from the Toronto dataset [3]. The overall 

number of clashes left in the system after each of d iterations 

is plotted against the mode duration d. In all cases exams are 

initially scheduled for the first timeslot. 
a) E(1, 1000)

0

2000

4000

6000

8000

10000

0 200 400 600 800 1000

duration

c
la

s
h

e
s

b) E(11, 1000)

0

50

100

150

200

0 200 400 600 800 1000

duration

c
la

s
h

e
s

 
c) E(25, 1000)
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Figure 1. Examples of E(m,d) cumulative operators 

 

Figures 1a, 1b and 1c correspond to “ear-f-83.stu” data file – 

a relatively small timetable with 190 exams, 24 slots and 

9586 clashes in the initial state, while Fig. 1d, 1e and 1f – 

“car-f-92.stu” with 543 exams, 32 slots and 40610 clashes. 

They show that the systems pass through an initial transient 

stage followed by a steady-state periodic phase. Three mode 

types can be distinguished for the given duration d: periodic 

modes dominated by steady-state phase dtransient << dsteady-state 

(Fig. 1a and 1d); quasi-periodic modes effectively limited to 

the transient phase dtransient  d (Fig. 1b, 1c and 1e); and 

mixed modes with comparable stages dtransient  dsteady-state 

(600 vs. 400 iterations in Fig. 1f). Any superposition of 

E(m,d) operators that constructs a clash-free examination 

timetable will identify a  timetabling model. Particularly, the 

model can be reduced to a single operator. 

 

3. BI-PAT ALGORITHM 
The current work is based on the Toronto benchmark dataset 

summarized in Table 1. The problems are sorted by the 

maximal number of clashes – the main measure of 

complexity. To reveal the basic properties of E(m,d), we 

schedule all the exams of the given problem for the first 

timeslot – the initial state, and separately apply E(m,1000) 

for each of 1 ≤ m < S. Figure 2 depicts the minimal number 

of clashes as a function of m for 8 relatively small problems 

from Table 1. Data points corresponding to periodic and 

mixed modes are in white, to quasi-periodic ones – in black. 

There can be drawn certain observations connecting the 

values of m with the mode type. If m and S are co-prime, 

then the corresponding modes are quasi-periodic. The only 

exception is m = 2, where the steady-state periodic phase is 

always present, at least for duration d = 1000, even if S is 

odd. All other modes are in resonance with S and, therefore, 

are either periodic or mixed. Particularly, if m is a factor of 

S, then the corresponding modes are strictly periodic. 

Secondly, there may be quasi-periodic modes that construct 

feasible timetables of the given problem. We call them 

feasible modes. Obviously, duration of the feasible modes is 

shorter for simpler problems. 

 
Table 1. Toronto Benchmark Dataset 

Problem Exams Students 

Clash 

density 

Max 

clashes Timeslots 

hec-s-92 81 2823 20% 2726 18 

sta-f-83 139 611 14% 2762 13 

ute-s-92 184 2749 8% 2860 10 

lse-f-91 381 2726 6% 9062 18 

yor-f-83 181 941 27% 9412 21 

ear-f-83 190 1125 29% 9586 24 

kfu-s-93 461 5349 6% 11786 20 

tre-s-92 261 4360 18% 12262 23 

rye-s-93 486 11483 7% 17744 23 

car-f-92 543 18419 14% 40610 32 

uta-s-93 622 21266 13% 48498 35 

car-s-91 682 16925 13% 59628 35 

pur-s-93 2419 30029 3% 164598 42 

 

0

50

100

150

200

250

300

350

2 3 4 5 6 7 8 9 1011 1213 1415 1617 1819 2021 2223

mode

M
in

 n
u

m
b

e
r 

o
f 

c
la

s
h

e
s
  

 1
  

ute-s-92

hec-s-92

ear-f-83

lse-f-91

kfu-s93

yor-f-83

tre-s-92

rye-s-93

 
Figure 2. Dependence of the minimal number of clashes on modes 

(d = 1000) in small Toronto benchmark problems. 

 

Assuming there is a solution for the given number of 

timeslots S, the obtained results allow formulating a modal 

version of a Propagating Particle Algorithm of an Academic 

Time Tabling – bi-PAT, as follows: 

1. Construct the initial schedule by assigning all exams to 

the first timeslot.  

2. Select a sufficiently large value of d and apply different 

E(m,d) operators to the initial schedule, where m and S 

are mutually prime numbers and 2 < m < 2S. 

3. If none of the applied operators constructs a feasible 

timetable, double d and repeat the step 2. 

 

Implementation of bi-PAT in this way may require 

significantly long duration, since no upper bound for the 

number of iterations d is explicitly specified. For example, d 

= 40010 for lse-f-91 problem; and d = 1000000 is not 

sufficient for construction of a feasible car-f-92 timetable – 

the first large problem in Table 1. It is, therefore, important 

to consider superposition of different modes. Let us 

introduce two modal characteristics – the mean number of 



clashes C0 averaged over the entire duration and the 

amplitude of periodic oscillations or quasi-periodic 

fluctuations A. Numerical experiments revealed the 

following main properties: 

 

 Expectedly, C0 practically does not depend on d and is a 

decreasing function of m, 1 ≤ m < S. 

 Generally, periodic modes oscillate around lower mean 

than quasi-periodic ones: C0periodic < C0quasi-periodic. 

Amplitudes of periodic oscillations, however, are smaller 

than the mean by at least an order of magnitude: Aperiodic << 

C0periodic. Therefore, in periodic modes the minimal number 

of clashes C0periodic - Aperiodic does not vanish, unless the 

mean is of order of unity. 

 Unlike periodic modes, amplitudes of quasi-periodic 

fluctuations depend on duration, and for sufficiently large 

d can become comparable with the mean, thus 

considerably minimizing the number of clashes (Fig. 1b) 

or completely resolving them (Fig. 1c).  

 

Aiming at bringing together all positive tendencies of the 

enlisted properties, we come up with an alternative 

formulation of bi-PAT – its cumulative version: 

1. Select a value of d, large enough to enter steady-state 

phase of periodic modes; 

2. Construct the initial schedule by assigning all exams to 

the first timeslot, and apply E(1,d); 

3. In a loop for each of m < S modes apply E(m,d) to the 

schedule that minimized clashes during the previous 

iteration E(m-1,d). 

 

As an example, the solution of hec-s-92 problem is depicted 

in Fig. 3. In all E(m,d) operators the same number of 

iterations d = 1000 is used. For each of them the state with 

minimal clashes was chosen as the initial schedule for the 

next one. Vertical bounds indicate the resulting mode 

duration. Figure 3 shows that the superposition of the modes 

adds steadily decreasing behavior to system’s evolution. 
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Figure 3. Cumulative bi-PAT applied to hec-s-92 timetable. 

The vertical lines indicate the bounds of successive modes. 

 

Normally, the overall duration of the cumulative version is 

much longer that the shortest feasible mode. In some cases, 

however, reversed situation is observed. 

 

4. TESTING RESULTS 
One of the main objectives of the Toronto dataset is to 

minimize the number of timeslots needed for construction of 

unconstrained timetables [3]. We compare bi-PAT with the 

best results achieved by several other methods in Table 2. 

The five sequential algorithms with backtracking [5] are 

denoted as follows: LD – sorting by the largest degree, SD – 

by the saturation degree, WD – by the weighted largest 

degree, LE – by the largest enrolment, and RO – random 

ordering. The simulated annealing hybrid method [8] 

denoted as SA, the genetic algorithm [10] – GA, and the ant 

colony optimization method [11] – AC, are also included. 

The records are divided into two main parts – the first 9 

small problems with less than 20000 clashes each, and the 

remaining 4 large problems. 

 
Table 2. Minimal number of timeslots by different approaches 

Problem LD SD WD LE RO SA GA AC bi-PAT 

hec-s-92 18 17 17 17 17 18 17 17 17 

sta-f-83 13 13 13 13 13 13 13 13 13 

ute-s-92 10 10 10 10 10 11 10 10 10 

lse-f-91 17 17 17 17 17 18 17 17 17 

yor-f-83 20 20 20 19 20 23 20 19 21 

ear-f-83 22 22 22 22 22 24 23 22 23 

kfu-s-93 19 19 19 20 19 21 20 19 20 

tre-s-92 22 20 20 22 22 21 21 20 23 

rye-s-93 21 21 22 22 22 22 23 21 22 

car-f-92 31 28 30 31 32 31 36 28 35 

uta-s-93 33 32 33 33 34 32 38 30 38 

car-s-91 32 28 30 31 32 30 36 28 38 

pur-s-93 36 35 38 38 N/A N/A N/A N/A 48 

 

All smaller timetables have been constructed for timeslots 

enlisted in Table 1 by both modal and cumulative versions of 

bi-PAT. However, there are only two cases among them that 

correspond to the best solutions – sta-f-83 and ute-s-92 with 

13 and 10 timeslots, respectively. To construct timetables 

with less slots, we apply customized versions of bi-PAT, 

where different combinations of the E(m,d) operators are 

empirically selected and tried instead of the cumulative 

superposition. Here again, the state with minimal number of 

clashes of the previous mode becomes the initial one for the 

next evolutionary operator. Particularly, cyclic application of 

E(15,1000), E(16,1000), E(18,1000) and E(19,1000) 

constructs hec-s-92 timetable of 17 slots. Another 

customized bi-PAT improves rye-s-93 timetable: E(21,2000) 

 E(11,10)3  E(21,100). Consideration of longer duration 

may be an alternative strategy. For example, ear-f-83 

timetable of 24 slots is constructed by E(25,889), while the 

one with 23 timeslots – by E(25,1227). Similarly, lse-f-91 

timetable of 18 slots is constructed by cumulative bi-PAT 

with d = 1000, while the one with 17 timeslots requires 10 

times more iterations.  

 

The best results on the Toronto data are achieved by SA [5] 

and AC [11]. It follows from Table 2 that bi-PAT 

demonstrates reasonable performance on the relatively small 

problems. It matches the best results reported for the 4 

smallest problems [5, 10-11]. As for the remaining 5 small 

problems, it is slightly worse than the sequential algorithms 

[5] and the ant colony method [11], but competitive with SA 

[8] and GA [10]. We find it important to emphasize that all 

the mentioned approaches are explicitly based on search or 

optimization paradigms, while the versions of bi-PAT reflect 

on evolution of the dynamical models (3). 

 

Different behavior of the dynamical models is observed in 

case of the 4 large timetables with more than 40000 clashes. 

Only cumulative bi-PAT is applied to these problems, since 

the duration of feasible modes (if any) quickly grows with 

the problem complexity. The results obtained for car-f-92, 

uta-s-93 and car-s-91 timetables agree with those achieved 

by GA [10]. Both methods, however, are significantly 

outperformed by other approaches [5, 8, 11]. The largest 

timetable pur-s-93 is a special case.  It requires 48 timeslots 

to construct a feasible timetable by cumulative bi-PAT with 

d = 1000, which is essentially inferior to the sequential 

algorithms excluding the one of random ordering [5].  

 



5. PERFORMANCE OPTIMIZATION 
The amount of iterations remains unspecified in both 

versions of bi-PAT. To enhance speed it up, different 

combinations of E(m,d) operators may be applied. Their 

successful empirical search, however, cannot be practically 

implemented in large timetables. Meantime, the modal 

version quickly converges to sub-optimal solutions, where 

the number of clashes is minimized. For example, no 

feasible solution is found within d = 1000 iterations on Fig. 

1b, but in around d = 600 iterations a sub-optimal solution is 

found with only 12 clashes.    

 

Based on sub-optimal solutions we propose below an 

optimization method using, as an example, the smallest 

timetable hec-s-92 – in the best case it should be constructed 

within 17 slots. We supplement the system with a Hopfield 

network – a one-layer neural network that has as many N 

binary neurons as many exams are included in the timetable 

[12]. Thus, it represents a single timeslot with i-th exam 

scheduled for it, if the corresponding i-th neuron has value 1. 

 

We apply E(18,100). In less than d = 100 iterations a sub-

optimal solution with only 2 clashes is found. Since the 

clashes are counted in pairs, all-but-one slots appear in 

feasible states. Each such slot represents a possible large 

clash-free clique of exams and, therefore, is used in the 

training set of the Hopfield network. The clashing slot 

generates two more training configurations with the first 

clashing exam removed from the first one and the second 

clashing exam – from the second one. If using an arbitrary, 

not sub-optimal, timetable with many clashes per slot, the 

inclusion of clashing slots into the training set becomes 

inefficient and the cliques drastically shrink. 

 

Once the network is trained, it is used for generation of a 

more optimal initial state. As before, all exams are initially 

scheduled for the first slot – this is the first input to the 

trained network. All exams from the output are left in this 

slot and others are moved to the second one – this is the 

second input to the network. The process continues until the 

last slot. It is not guaranteed that the generated initial state is 

feasible, but the subsequent application of pi-PAT will 

require shorter duration.  

  

6. CONCLUSION 
In the present work we treat examination timetabling as a 

system of interacting particles and suggest an iterative and 

spatially periodic multimodal model of the interaction 

between the exams through the parameterized evolutionary 

operators E(m,d) (1)–(3). Originating from an intuitive 

concept of moving away from clashing counterparts, the 

model exhibits realistic behavior with certain similarities to 

dynamical systems governed by laws of classical mechanics. 

Particularly, we observe such well-known and studied 

phenomenon as resonant orbits or periodic modes, where the 

period of motion of individual particles m has common 

divisors with the problem’s spatial period S – the number of 

available timeslots. Meantime, experiments with the Toronto 

benchmark problems demonstrate that quasi-periodic modes 

with co-prime m and S are closely related to the construction 

of feasible timetables. Each of 9 relatively small problems 

has at least one quasi-periodic mode of evolution that 

resolves all the clashes. Based on the revealed general 

properties, the Propagating Particles Algorithm of an 

Academic Time Tabling – bi-PAT, is formulated in two 

versions. In terms of constructing timetables of minimal 

length, it can compete with other approaches, when applied 

to problems of moderate size. 

 

The main weakness of the algorithm is the unbounded 

specification of the duration parameter d. To optimize the 

search, we consider states in timeslots as patterns and 

propose using a Hopfield network for pattern matching. A 

strategy of the network training is presented based on the 

hec-s-92 case-study from the Toronto benchmark dataset. 

For more detailed formulation, we are currently developing 

an integrated environment that will combine the 

implementation of bi-PAT algorithm with the Hopfield 

network. Having this tool, we will present in the next papers 

the testing results and draw comparisons with other methods. 
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