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ABSTRACT 
The Longest Common Subsequence (LCS) problem is aimed 
at constructing a maximum length subsequence, common to a 
given set of sequences, defined on some finite alphabet of 
symbols. The paper, without loss of generality considers the 
particular case of two input sequences. We consider the 
problem in an online fashion, where symbols arrive one-by-
one and the next acquired symbol is appending any one of the 
two input sequences. The sought-for LCS algorithm acts by 
recursive handling of parts of sequences arrival so far, 
constructing and updating specific structures of markers 
representing the interrelations of the longest common 
subsequences of the two input sequences. In paper we present 
a perfect online parallelization of that algorithm for the 
“simple” memory model, so that the parallel complexity 
becomes O 𝑚𝑛 𝑡  for 𝑡 parallel threads.  

  
Keywords 
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1. INTROCUCTION 
This introductory section presents the required definitions and 
preliminaries, and a short survey on LCS problem area. 
 
1.1. Preliminaries 
Information in various application areas often can be 
modelled as a set of finite alphanumeric sequences, e.g., DNA 
or protein sequences in biology. Consider a finite 
alphanumeric alphabet Σ. A subsequence of a sequence 𝐴 
defined on alphabet Σ is a sequence that can be derived from 
𝐴 by removing some of its items. Obviously, in the general 
case the same subsequence can be obtained from the same 
sequence 𝐴 by removing its different sets of items. The empty 
sequence is said to be obtained from any sequence by 
removing all its items, so it is a subsequence of each sequence. 
A sequence 𝐶 is said to be a common subsequence of 
sequences 𝐴 and 𝐵, if 𝐶 is a subsequence of both sequences. 
Note that the empty sequence is a zero length common 
subsequence of 𝐴 and 𝐵, thus, formally, the set of all common 
subsequences of 𝐴 and 𝐵 is not empty. Some subsequences in 
the pair 𝐴 and 𝐵 are deadlock (not extendable). Some of them 
are of maximal length, and each of these sequences is called 
the longest common subsequence or LCS. The LCS problem is 
to construct algorithmically one or the entire longest common 
subsequences to the given pair (or a larger set) of sequences. 
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Among the LCS of 𝐴 and 𝐵 it is to distinct those with minimal 
maximal element in 𝐴, and/or in 𝐵. This kind of structures are 
identified in considered algorithm below for the lengths lesser 
than the length of LCS. These collections of subsequences 
define the specific structures of markers used in online mining 
of LCS. These novel data structures and the algorithm 
developed by the use of these structures will help in solving 
new online applications of traditional LCS problems. 
The well-recognized theoretical and applied value of the LCS 
model may be introduced in terms of bioinformatics, where 
sequences are the most basic mathematical model of 
genomics, which can describe the primary structure of the 
nucleic acid and protein molecules. Searching LCS and 
genomic sequencing and alignment issues are important 
approaches of identifying the sequence similarities that can be 
further utilized in gene identification, in construction of 
optimal haplotype mechanisms, in mutation determination, in 
genotype-phenotype similarity searches, classifications, etc. 
With the successful implementation of the Human Genome 
Project, the lengths and sizes of biological sequences are 
growing explosively and exponentially. Mining the LCS from 
these sequences is becoming more important in theory and in 
applications. 
 
1.2. Survey on the LCS problem 
Consider two sequences 𝐴 = 𝑎+ ⋯𝑎- ⋯ 𝑎. and 𝐵 =
𝑏+ ⋯𝑏0 ⋯ 𝑏1 defined on the same alphabet Σ. If 𝑎- = 𝑏0 for 
some 𝑖, 1 ≤ 𝑖 ≤ 𝑚, and for some 𝑗, 1 ≤ 𝑗 ≤ 𝑛, then 𝑖, 𝑗  is 
called a match between 𝐴 and 𝐵. A match 𝑖, 𝑗  is said to be 
preceding another match 𝑖7, 𝑗7 , if concurrently 𝑖 < 𝑖7 and 
𝑗 < 𝑗7. Note that a longest common subsequence (LCS) of 𝐴 
and 𝐵 is some sequence 𝐶 = 𝑐+ ⋯ 𝑐: ⋯ 𝑐; of matches 
𝑖:, 𝑗: :<+

; , 𝑙 ≥ 0, such that matches 𝑖:, 𝑗: :<+
;  between 𝐴 

and 𝐵 proceed each other with increase of 	𝑖, and 𝑙 is 
maximum length among such sequences. 
For each 𝑖, 0 ≤ 𝑖 ≤ 𝑚, we denote by 𝐴- the 𝑖-th prefix of 𝐴, 
𝐴- ≔ 𝑎+,⋯ , 𝑎-, and for each 𝑗, 0 ≤ 𝑗 ≤ 𝑛 𝐵0 is the 𝑗-th prefix 
of 𝐵, 𝐵0 ≔ 𝑏+,⋯ , 𝑏0. In particular, 𝐴B and 𝐵B are the empty 
sequences.  
 
In 1970, S. Needleman and C. Wunsch, being the first, 
proposed a heuristic homology algorithm using the match, 
mismatch, and insertion-deletion operations for sequence 
alignment [5]. This is a global alignment algorithm that 
requires O(m, n) calculation steps (m and n are the lengths of 
the two sequences being aligned). The algorithm uses the 
iterative calculation of a matrix for the purpose of modelling 



the global alignment. In the following, D. Sankoff [6], A. 
Reichert et al. [7], W. Beyer et al. [8] and others formulated 
alternative heuristic algorithms for analyzing gene sequence 
similarities. P. Sellers introduced a system for measuring 
sequence distances [9]. In 1981, Smith and Waterman 
published a new local alignment calculation algorithm. The 
Smith–Waterman algorithm is to align two sequences of 
lengths m and n, and it is rather time-consuming requiring 
O(mGn) steps. O. Gotoh [2] and S. Altschul [3] optimized this 
algorithm to O(mn) steps. The space complexity was 
optimized by W. Myers and E. Miller [4] from O(mn) to O(n) 
(linear), where n is the length of the shorter sequence. 
 
In Big Data era, the lengths and sizes of alphanumeric 
sequences of experiments are growing explosively, leading to 
grand challenges for the classical NP-hard problem of 
searching for the Longest Common Subsequences of the two 
or more input sequences. The state-of-the-art LCS algorithms 
are hardly applied to long and large-scale sequences 
alignments. To overcome their drawbacks and tackle the 
longer or even big sequences alignments, various strategies, 
e.g., parallel hierarchical sorting, optimal labeling, reuse of 
intermediate results, subsection calculation and overall 
integration into the hybrid analytic systems is required. The 
target is to achieve the real linear time and space complexity 
algorithm for aligned sequences. 
 
The widely known algorithm (D. Hirschberg [1]), and its 
consecutive modifications solve the LCS problem by the 
dynamic programming approach. We refer to this algorithm 
as a “classical” algorithm. It is an incremental algorithm based 
on a notion that the pair of last elements of sequences help to 
shorten the considered portions of the sequences. Let 
 

 

𝑙-,0 = 
0 if	𝑖 = 0	or	𝑗 = 0,

max 𝑙-N+,0, 𝑙-,0N+ if	𝑖 > 0	and	𝑗 > 0	and	𝑎- ≠ 𝑏0
𝑙-N+,0N+ + 1 if	𝑖 > 0	and	𝑗 > 0	and	𝑎- = 𝑏0.

, 
(1) 

 
where 𝑙-,0 denotes the length of the longest common 
subsequence of 𝐴- and 𝐵0 for 0 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛. 
Based on this equation, for the given sequences 𝐴 and 𝐵 the 
“classical” algorithm obtains an 𝑚 + 1 × 𝑛 + 1  matrix 
𝑙-,0 -,0<B

.,1
 of scores, and based on that matrix in a second stage  

it obtains a longest common subsequence of 𝐴 and 𝐵. It runs 
Θ 𝑚𝑛  steps, though the Method of Four Russians (the one 
used in Boolean matrices multiplication algorithms [13]) can 
be applied to that algorithm [12], reducing the complexity to 
Θ 𝑚𝑛 log𝑚  (assuming 𝑚 ≤ 𝑛). The “classical” algorithm 
can be implemented in an online manner, but it can’t when the 
Method of Four Russians is applied. 
 
[14] examined the lower bound of LCS problems in a decision 
tree model of computation, where the tree vertices represent 
“equal – unequal” comparisons. It is shown that in such model 
the lower bound is Ω 𝑚𝑠  (assuming 𝑚 ≤ 𝑛, and 𝑠 is the size 
of Σ). Not all algorithms solving the LCS problem necessarily 
fit in the “equal – unequal” comparison model, in particular 
the one using the Method of Four Russians doesn’t. 
The complexity O 𝑚𝑛 log𝑚  is asymptotically the best 
among all known upper bounds when complexity is expressed 
in terms of lengths of the input sequences and the size of the 
input alphabet only [13]. For those, with the “equal – unequal” 
comparisons model, O 𝑚𝑛  is asymptotically the best 
complexity. In either case there is a huge gap between the best 
known upper and lower bounds. Due to this situation for an 
algorithm solving LCS problem the dependency of its 
complexity only form 𝑚, 𝑛 and 𝑠 poorly describes the 
algorithm. For many known algorithms solving the LCS 
problem their complexities essentially depend on other 
nontraditional parameters describing the input pair of 
sequences. The most common parameter of this kind is the 
LCS length itself, denoted by 𝑙; the number of matches 
between the input sequences, denoted by 𝑟 (this is related to 
the sparsity measure); and the number of some special kind of 
matches called dominant matches, denoted by 𝑑 [15].  
 
A match 𝑖, 𝑗  is called dominant, if 𝑙-N+,0N+ = 𝑙-N+,0 =
𝑙-,0N+ = 𝑙-,0 − 1 (recall that 𝑙-,0 is the LCS length of 𝑖-th prefix 
of 𝐴 and 𝑗-th prefix of 𝐵), and 𝑙-,0 is called the rank of the 
dominant match 𝑖, 𝑗 . Note that in the worst case 𝑙 = Θ 𝑚 , 
𝑟 = Θ 𝑚𝑛  and it can be shown that 𝑑 = Θ 𝑚𝑛 . A more 
detail survey on the complexities of the algorithms solving the 
LCS problem is provided in [16]. Depending on interrelations 
between values 𝑚, 𝑛, 𝑠, 𝑙, 𝑟, 𝑑, as well as depending on other 
issues of particular applications, some of the LCS algorithms 
may be preferable than the other ones. 
 

 
 

Figure 1. Online update of sequence A, dominant matches, and markers. 
 

 



2. THE ALGORITHM 
As it is mentioned above, our target is the LCS problem in an 
online performance manner, where the next symbol arrival is 
an action that is appending to one of the two input sequences. 
The algorithm iteratively processes that arrival by updating 
the maintained structures representing the LCS of sequences 
arrived so far. Let 𝐴 and 𝐵 be the sequences arrived so far and 
let a new symbol 𝑥 ∈ Σ is appending to 𝐴, thus resulting a new 
sequence 𝐴7 ≔ 𝐴𝑎._+ with 𝑎._+ = 𝑥. Starting from the next 
point we will describe the current iteration step in an online 
LCS algorithm which is based on analysis of the new data 
arrival, constructing the special algorithmic work-time data, 
corresponding to sequences 𝐴 and 𝐵. These structures provide 
an LCS of 𝐴7 and 𝐵, and algorithm may update these data to 
correspond them to the sequences 𝐴7 and 𝐵. 
 
2.1. Markers and their update 
As before, let 𝐴 = 𝑎+ ⋯𝑎- ⋯ 𝑎., 𝑚 ≥ 1, and 𝐵 =
𝑏+ ⋯𝑏0 ⋯ 𝑏1, 𝑛 ≥ 1, be sequences defined on some symbol 
alphabet Σ, and let 𝑙 be the LCS length of 𝐴 and 𝐵. Denote by 
𝑖:, 1 ≤ 𝑘 ≤ 𝑙, the minimum among all 𝐴-indices of the last 
elements of 𝑘-length common subsequences of 𝐴 and 𝐵, and 
denote by 𝑗:, 1 ≤ 𝑘 ≤ 𝑙, the minimum among all 𝐵-indices of 
the last elements of 𝑘-length common subsequences of 𝐴 and 
𝐵, so that 
 

 

𝑖: ≔ min 𝑝: ∣ ∃	 𝑝d, 𝑞d d<+
: ∶ 𝑎gh = 𝑏ih, 1 ≤

𝑟 ≤ 𝑘; 1 ≤ 𝑝+ < ⋯ < 𝑝: ≤ 𝑚; 1 ≤ 𝑞+ < ⋯ <
𝑞: ≤ 𝑛 , 

 

(2) 

 

𝑗: ≔ min 𝑞: ∣ ∃	 𝑝d, 𝑞d d<+
: ∶ 𝑎gh = 𝑏ih, 1 ≤

𝑟 ≤ 𝑘; 1 ≤ 𝑝+ < ⋯ < 𝑝: ≤ 𝑚; 1 ≤ 𝑞+ < ⋯ <
𝑞: ≤ 𝑛 . 

 

(3) 

We call 𝑖: the 𝑘-th mark of 𝐵 in 𝐴 and we call 𝑗: the 𝑘-th 
mark of 𝐴 in 𝐵.  
Lemma 1 Marker sequences 𝑖: :<+

;  and 𝑗: :<+
;  

are strictly increasing.  
Indeed, let for some 𝑖:, 𝑘 ≥ 2, 𝐶 be a 𝑘-length common 
subsequences of 𝐴 and 𝐵 ending at 𝑖: in 𝐴. Removing the last 
element from 𝐶 we will get a 𝑘 − 1 -length common 
subsequence of 𝐴 and 𝐵 ending in 𝐴 at an index not greater 
than 𝑖: − 1, and as 𝑖:N+ is the minimum among such indices, 
then we will get that 𝑖:N+ < 𝑖:. Similarly it can be checked 
that 𝑗: :<+

;  is also strictly increasing. Note, that the 
subsequences of 𝐴 induced by 𝑖:-s and the subsequences of 𝐵 
induced by 𝑗:-s are not necessarily common subsequences of 
𝐴 and 𝐵. Also the 𝑖:, 𝑗: -s are not necessarily matches 
between 𝐴 and 𝐵. 
Now recall that 𝐴7 = 𝐴𝑎._+, where 𝑎._+ = 𝑥, and denote by 
𝑙7 the LCS length of 𝐴7 and 𝐵. Obviously 𝑙7 equals either 𝑙 or 
𝑙 + 1. Then let 𝑖:7 , 1 ≤ 𝑘 ≤ 𝑙7, denote the 𝑘-th mark of 𝐵 in 𝐴7 
and 𝑗:7 , 1 ≤ 𝑘 ≤ 𝑙7, denote the 𝑘-th mark of 𝐴7 in 𝐵. Next we 
show how to obtain 𝑖:7 :<+

;l  and 𝑗:7 :<+
;l  based on 𝑖: :<+

;  and 
𝑗: :<+

; . 
 
Lemma 2 For 𝒌, 𝟏 ≤ 𝒌 ≤ 𝒍, it holds 𝒊𝒌7 = 𝒊𝒌. 
Lemma 3 It holds 𝑙7 = 𝑙 + 1 if and only if 𝐵 has 
symbol 𝑥 after index 𝑗;, and in that case it holds 𝑖;_+7 = 𝑚 +
1. 

Corollary If 𝐵 has symbol 𝑥 after index 𝑗;, then it 
holds 𝑙7 = 𝑙 + 1 and 𝑗;_+7  is the index of first 𝑥 after 𝑗; in 𝐵.  
Thus Lemma 2 and Lemma 3 show how to obtain the marks 
of 𝐵 in 𝐴7. Next we show how to obtain the marks of 𝐴7 in 𝐵. 
 
Lemma 4 For 𝑘, 1 ≤ 𝑘 ≤ 𝑙, it holds 𝑗:N+ < 𝑗:7 ≤ 𝑗:. 
Lemma 5 For 𝑘, 1 ≤ 𝑘 ≤ 𝑙, if there is 𝑥 between 
indexes 𝑗:N+ and 𝑗: in 𝐵, then 𝑗:7  is the index of the first of 
them, otherwise 𝑗:7 = 𝑗:. 
 
Thus the Lemma 4 and Lemma 5 show how to obtain the 
marks of 𝐴7 in 𝐵, and previously we have shown how to obtain 
the marks of 𝐵 in 𝐴7. Thus we have shown how update the 
marks of 𝐴 and 𝐵 to marks of 𝐴7 and 𝐵. For the usability 
purposes we combine this claim into the final postulations 
(see Figure 1). 
 
Theorem 1 For 𝑘, 1 ≤ 𝑘 ≤ 𝑙, it holds 𝑖:7 = 𝑖:; if there 
is 𝑥 between indexes 𝑗:N+ and 𝑗: in 𝐵, then 𝑗:7  is the index of 
the first of them, and otherwise it holds 𝑗:7 = 𝑗:; it holds 𝑙7 =
𝑙 + 1 if and only if 𝐵 has symbol 𝑥 after index 𝑗;, and in that 
case it holds 𝑖;_+7 = 𝑚 + 1 and 𝑗;_+7  is the index of first 𝑥 after 
𝑗; in 𝐵. 
 
Theorem 2 For some 𝑗, 1 ≤ 𝑗 ≤ 𝑛, the match 𝑚 +
1, 𝑗  is dominant if and only if for some 𝑘, 1 ≤ 𝑘 ≤ 𝑙, it holds 
𝑗 = 𝑗:7 < 𝑗: or 𝑙7 = 𝑙 + 1 and 𝑗 = 𝑗;_+7 . 
 
Thus the Theorem 1 shows how to update the marks of 𝐴 and 
𝐵 to the marks of 𝐴7 and 𝐵, and Theorem 2 shows how to 
enumerate all dominant matches of 𝐴7 and 𝐵 with index 𝑚 +
1 in 𝐴7 during that update. Recall, that in order to provide an 
online algorithm solving the LCS problem it is sufficient to 
provide an online algorithm which enumerates the dominant 
matches of the input sequences.  
 
3. CONCLUSION 
The LCS (Longest Common Subsequence) problem is 
broadly investigated. A very basic role plays the dynamic 
programming style algorithm of its solution that have today 
many interpretations. Besides the classical postulation of the 
problem it is an attractive to consider its online version. And 
in both cases static and online it is required to split the task 
into the parallel computational threads. The online parallel 
algorithm introduced in this paper presents another 
interpretation of the mentioned de-facto standard algorithm of 
the domain, that provides additional structures that are able to 
accompany the algorithmic iterations, providing it the same 
way perfect parallelization for arbitrary number of processors.  
 
The designed online parallel algorithm is given for the 
“simple” case of the basic algorithm when ordinary sequential 
data structure to store and update are used. The specific case 
when tree like structures are used to reduce the complexity is 
still waiting for its elaboration. 
 
It is to mention that the other known parallel algorithms in the 
domain are developed on base of the classical algorithm so 
that they can’t be online. They also depend critically on the 
lengths of input sequences and on the number of processors. 
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