
LCS Algorithm for Big Data Flows1

 Levon Aslanyan

Institute for Informatics and
Automation Problems

Yerevan, Armenia
lasl@sci.am

Vahagn Minasyan

Institute for Informatics and
Automation Problems

Yerevan, Armenia
lab4@ipia.sci.am

ABSTRACT
The Longest Common Subsequence (LCS) problem is aimed
at constructing a maximum length subsequence, common to a
given set of sequences, defined on some finite alphabet of
symbols. The paper, without loss of generality considers the
particular case of two input sequences. We consider the
problem in an online fashion, where symbols arrive one-by-
one and the next acquired symbol is appending any one of the
two input sequences. The sought-for LCS algorithm acts by
recursive handling of parts of sequences arrival so far,
constructing and updating specific structures of markers
representing the interrelations of the longest common
subsequences of the two input sequences. In paper we present
a perfect online parallelization of that algorithm for the
“simple” memory model, so that the parallel complexity
becomes O 𝑚𝑛 𝑡 for 𝑡 parallel threads.

Keywords
LCS, online algorithm, parallelization, iteration, data
structure.

1. INTROCUCTION
This introductory section presents the required definitions and
preliminaries, and a short survey on LCS problem area.

1.1. Preliminaries
Information in various application areas often can be
modelled as a set of finite alphanumeric sequences, e.g., DNA
or protein sequences in biology. Consider a finite
alphanumeric alphabet Σ. A subsequence of a sequence 𝐴
defined on alphabet Σ is a sequence that can be derived from
𝐴 by removing some of its items. Obviously, in the general
case the same subsequence can be obtained from the same
sequence 𝐴 by removing its different sets of items. The empty
sequence is said to be obtained from any sequence by
removing all its items, so it is a subsequence of each sequence.
A sequence 𝐶 is said to be a common subsequence of
sequences 𝐴 and 𝐵, if 𝐶 is a subsequence of both sequences.
Note that the empty sequence is a zero length common
subsequence of 𝐴 and 𝐵, thus, formally, the set of all common
subsequences of 𝐴 and 𝐵 is not empty. Some subsequences in
the pair 𝐴 and 𝐵 are deadlock (not extendable). Some of them
are of maximal length, and each of these sequences is called
the longest common subsequence or LCS. The LCS problem is
to construct algorithmically one or the entire longest common
subsequences to the given pair (or a larger set) of sequences.

1 This research is partially supported by grants № 15T-1B417, and № 15RF-083 of State Committee of Science of
Ministry of education and science of Republic of Armenia.

Among the LCS of 𝐴 and 𝐵 it is to distinct those with minimal
maximal element in 𝐴, and/or in 𝐵. This kind of structures are
identified in considered algorithm below for the lengths lesser
than the length of LCS. These collections of subsequences
define the specific structures of markers used in online mining
of LCS. These novel data structures and the algorithm
developed by the use of these structures will help in solving
new online applications of traditional LCS problems.
The well-recognized theoretical and applied value of the LCS
model may be introduced in terms of bioinformatics, where
sequences are the most basic mathematical model of
genomics, which can describe the primary structure of the
nucleic acid and protein molecules. Searching LCS and
genomic sequencing and alignment issues are important
approaches of identifying the sequence similarities that can be
further utilized in gene identification, in construction of
optimal haplotype mechanisms, in mutation determination, in
genotype-phenotype similarity searches, classifications, etc.
With the successful implementation of the Human Genome
Project, the lengths and sizes of biological sequences are
growing explosively and exponentially. Mining the LCS from
these sequences is becoming more important in theory and in
applications.

1.2. Survey on the LCS problem
Consider two sequences 𝐴 = 𝑎+ ⋯𝑎- ⋯ 𝑎. and 𝐵 =
𝑏+ ⋯𝑏0 ⋯ 𝑏1 defined on the same alphabet Σ. If 𝑎- = 𝑏0 for
some 𝑖, 1 ≤ 𝑖 ≤ 𝑚, and for some 𝑗, 1 ≤ 𝑗 ≤ 𝑛, then 𝑖, 𝑗 is
called a match between 𝐴 and 𝐵. A match 𝑖, 𝑗 is said to be
preceding another match 𝑖7, 𝑗7 , if concurrently 𝑖 < 𝑖7 and
𝑗 < 𝑗7. Note that a longest common subsequence (LCS) of 𝐴
and 𝐵 is some sequence 𝐶 = 𝑐+ ⋯ 𝑐: ⋯ 𝑐; of matches
𝑖:, 𝑗: :<+

; , 𝑙 ≥ 0, such that matches 𝑖:, 𝑗: :<+
; between 𝐴

and 𝐵 proceed each other with increase of 	𝑖, and 𝑙 is
maximum length among such sequences.
For each 𝑖, 0 ≤ 𝑖 ≤ 𝑚, we denote by 𝐴- the 𝑖-th prefix of 𝐴,
𝐴- ≔ 𝑎+,⋯ , 𝑎-, and for each 𝑗, 0 ≤ 𝑗 ≤ 𝑛 𝐵0 is the 𝑗-th prefix
of 𝐵, 𝐵0 ≔ 𝑏+,⋯ , 𝑏0. In particular, 𝐴B and 𝐵B are the empty
sequences.

In 1970, S. Needleman and C. Wunsch, being the first,
proposed a heuristic homology algorithm using the match,
mismatch, and insertion-deletion operations for sequence
alignment [5]. This is a global alignment algorithm that
requires O(m, n) calculation steps (m and n are the lengths of
the two sequences being aligned). The algorithm uses the
iterative calculation of a matrix for the purpose of modelling

the global alignment. In the following, D. Sankoff [6], A.
Reichert et al. [7], W. Beyer et al. [8] and others formulated
alternative heuristic algorithms for analyzing gene sequence
similarities. P. Sellers introduced a system for measuring
sequence distances [9]. In 1981, Smith and Waterman
published a new local alignment calculation algorithm. The
Smith–Waterman algorithm is to align two sequences of
lengths m and n, and it is rather time-consuming requiring
O(mGn) steps. O. Gotoh [2] and S. Altschul [3] optimized this
algorithm to O(mn) steps. The space complexity was
optimized by W. Myers and E. Miller [4] from O(mn) to O(n)
(linear), where n is the length of the shorter sequence.

In Big Data era, the lengths and sizes of alphanumeric
sequences of experiments are growing explosively, leading to
grand challenges for the classical NP-hard problem of
searching for the Longest Common Subsequences of the two
or more input sequences. The state-of-the-art LCS algorithms
are hardly applied to long and large-scale sequences
alignments. To overcome their drawbacks and tackle the
longer or even big sequences alignments, various strategies,
e.g., parallel hierarchical sorting, optimal labeling, reuse of
intermediate results, subsection calculation and overall
integration into the hybrid analytic systems is required. The
target is to achieve the real linear time and space complexity
algorithm for aligned sequences.

The widely known algorithm (D. Hirschberg [1]), and its
consecutive modifications solve the LCS problem by the
dynamic programming approach. We refer to this algorithm
as a “classical” algorithm. It is an incremental algorithm based
on a notion that the pair of last elements of sequences help to
shorten the considered portions of the sequences. Let

𝑙-,0 =
0 if	𝑖 = 0	or	𝑗 = 0,

max 𝑙-N+,0, 𝑙-,0N+ if	𝑖 > 0	and	𝑗 > 0	and	𝑎- ≠ 𝑏0
𝑙-N+,0N+ + 1 if	𝑖 > 0	and	𝑗 > 0	and	𝑎- = 𝑏0.

,
(1)

where 𝑙-,0 denotes the length of the longest common
subsequence of 𝐴- and 𝐵0 for 0 ≤ 𝑖 ≤ 𝑚 and 0 ≤ 𝑗 ≤ 𝑛.
Based on this equation, for the given sequences 𝐴 and 𝐵 the
“classical” algorithm obtains an 𝑚 + 1 × 𝑛 + 1 matrix
𝑙-,0 -,0<B

.,1
 of scores, and based on that matrix in a second stage

it obtains a longest common subsequence of 𝐴 and 𝐵. It runs
Θ 𝑚𝑛 steps, though the Method of Four Russians (the one
used in Boolean matrices multiplication algorithms [13]) can
be applied to that algorithm [12], reducing the complexity to
Θ 𝑚𝑛 log𝑚 (assuming 𝑚 ≤ 𝑛). The “classical” algorithm
can be implemented in an online manner, but it can’t when the
Method of Four Russians is applied.

[14] examined the lower bound of LCS problems in a decision
tree model of computation, where the tree vertices represent
“equal – unequal” comparisons. It is shown that in such model
the lower bound is Ω 𝑚𝑠 (assuming 𝑚 ≤ 𝑛, and 𝑠 is the size
of Σ). Not all algorithms solving the LCS problem necessarily
fit in the “equal – unequal” comparison model, in particular
the one using the Method of Four Russians doesn’t.
The complexity O 𝑚𝑛 log𝑚 is asymptotically the best
among all known upper bounds when complexity is expressed
in terms of lengths of the input sequences and the size of the
input alphabet only [13]. For those, with the “equal – unequal”
comparisons model, O 𝑚𝑛 is asymptotically the best
complexity. In either case there is a huge gap between the best
known upper and lower bounds. Due to this situation for an
algorithm solving LCS problem the dependency of its
complexity only form 𝑚, 𝑛 and 𝑠 poorly describes the
algorithm. For many known algorithms solving the LCS
problem their complexities essentially depend on other
nontraditional parameters describing the input pair of
sequences. The most common parameter of this kind is the
LCS length itself, denoted by 𝑙; the number of matches
between the input sequences, denoted by 𝑟 (this is related to
the sparsity measure); and the number of some special kind of
matches called dominant matches, denoted by 𝑑 [15].

A match 𝑖, 𝑗 is called dominant, if 𝑙-N+,0N+ = 𝑙-N+,0 =
𝑙-,0N+ = 𝑙-,0 − 1 (recall that 𝑙-,0 is the LCS length of 𝑖-th prefix
of 𝐴 and 𝑗-th prefix of 𝐵), and 𝑙-,0 is called the rank of the
dominant match 𝑖, 𝑗 . Note that in the worst case 𝑙 = Θ 𝑚 ,
𝑟 = Θ 𝑚𝑛 and it can be shown that 𝑑 = Θ 𝑚𝑛 . A more
detail survey on the complexities of the algorithms solving the
LCS problem is provided in [16]. Depending on interrelations
between values 𝑚, 𝑛, 𝑠, 𝑙, 𝑟, 𝑑, as well as depending on other
issues of particular applications, some of the LCS algorithms
may be preferable than the other ones.

Figure 1. Online update of sequence A, dominant matches, and markers.

2. THE ALGORITHM
As it is mentioned above, our target is the LCS problem in an
online performance manner, where the next symbol arrival is
an action that is appending to one of the two input sequences.
The algorithm iteratively processes that arrival by updating
the maintained structures representing the LCS of sequences
arrived so far. Let 𝐴 and 𝐵 be the sequences arrived so far and
let a new symbol 𝑥 ∈ Σ is appending to 𝐴, thus resulting a new
sequence 𝐴7 ≔ 𝐴𝑎._+ with 𝑎._+ = 𝑥. Starting from the next
point we will describe the current iteration step in an online
LCS algorithm which is based on analysis of the new data
arrival, constructing the special algorithmic work-time data,
corresponding to sequences 𝐴 and 𝐵. These structures provide
an LCS of 𝐴7 and 𝐵, and algorithm may update these data to
correspond them to the sequences 𝐴7 and 𝐵.

2.1. Markers and their update
As before, let 𝐴 = 𝑎+ ⋯𝑎- ⋯ 𝑎., 𝑚 ≥ 1, and 𝐵 =
𝑏+ ⋯𝑏0 ⋯ 𝑏1, 𝑛 ≥ 1, be sequences defined on some symbol
alphabet Σ, and let 𝑙 be the LCS length of 𝐴 and 𝐵. Denote by
𝑖:, 1 ≤ 𝑘 ≤ 𝑙, the minimum among all 𝐴-indices of the last
elements of 𝑘-length common subsequences of 𝐴 and 𝐵, and
denote by 𝑗:, 1 ≤ 𝑘 ≤ 𝑙, the minimum among all 𝐵-indices of
the last elements of 𝑘-length common subsequences of 𝐴 and
𝐵, so that

𝑖: ≔ min 𝑝: ∣ ∃	 𝑝d, 𝑞d d<+
: ∶ 𝑎gh = 𝑏ih, 1 ≤

𝑟 ≤ 𝑘; 1 ≤ 𝑝+ < ⋯ < 𝑝: ≤ 𝑚; 1 ≤ 𝑞+ < ⋯ <
𝑞: ≤ 𝑛 ,

(2)

𝑗: ≔ min 𝑞: ∣ ∃	 𝑝d, 𝑞d d<+
: ∶ 𝑎gh = 𝑏ih, 1 ≤

𝑟 ≤ 𝑘; 1 ≤ 𝑝+ < ⋯ < 𝑝: ≤ 𝑚; 1 ≤ 𝑞+ < ⋯ <
𝑞: ≤ 𝑛 .

(3)

We call 𝑖: the 𝑘-th mark of 𝐵 in 𝐴 and we call 𝑗: the 𝑘-th
mark of 𝐴 in 𝐵.
Lemma 1 Marker sequences 𝑖: :<+

; and 𝑗: :<+
;

are strictly increasing.
Indeed, let for some 𝑖:, 𝑘 ≥ 2, 𝐶 be a 𝑘-length common
subsequences of 𝐴 and 𝐵 ending at 𝑖: in 𝐴. Removing the last
element from 𝐶 we will get a 𝑘 − 1 -length common
subsequence of 𝐴 and 𝐵 ending in 𝐴 at an index not greater
than 𝑖: − 1, and as 𝑖:N+ is the minimum among such indices,
then we will get that 𝑖:N+ < 𝑖:. Similarly it can be checked
that 𝑗: :<+

; is also strictly increasing. Note, that the
subsequences of 𝐴 induced by 𝑖:-s and the subsequences of 𝐵
induced by 𝑗:-s are not necessarily common subsequences of
𝐴 and 𝐵. Also the 𝑖:, 𝑗: -s are not necessarily matches
between 𝐴 and 𝐵.
Now recall that 𝐴7 = 𝐴𝑎._+, where 𝑎._+ = 𝑥, and denote by
𝑙7 the LCS length of 𝐴7 and 𝐵. Obviously 𝑙7 equals either 𝑙 or
𝑙 + 1. Then let 𝑖:7 , 1 ≤ 𝑘 ≤ 𝑙7, denote the 𝑘-th mark of 𝐵 in 𝐴7
and 𝑗:7 , 1 ≤ 𝑘 ≤ 𝑙7, denote the 𝑘-th mark of 𝐴7 in 𝐵. Next we
show how to obtain 𝑖:7 :<+

;l and 𝑗:7 :<+
;l based on 𝑖: :<+

; and
𝑗: :<+

; .

Lemma 2 For 𝒌, 𝟏 ≤ 𝒌 ≤ 𝒍, it holds 𝒊𝒌7 = 𝒊𝒌.
Lemma 3 It holds 𝑙7 = 𝑙 + 1 if and only if 𝐵 has
symbol 𝑥 after index 𝑗;, and in that case it holds 𝑖;_+7 = 𝑚 +
1.

Corollary If 𝐵 has symbol 𝑥 after index 𝑗;, then it
holds 𝑙7 = 𝑙 + 1 and 𝑗;_+7 is the index of first 𝑥 after 𝑗; in 𝐵.
Thus Lemma 2 and Lemma 3 show how to obtain the marks
of 𝐵 in 𝐴7. Next we show how to obtain the marks of 𝐴7 in 𝐵.

Lemma 4 For 𝑘, 1 ≤ 𝑘 ≤ 𝑙, it holds 𝑗:N+ < 𝑗:7 ≤ 𝑗:.
Lemma 5 For 𝑘, 1 ≤ 𝑘 ≤ 𝑙, if there is 𝑥 between
indexes 𝑗:N+ and 𝑗: in 𝐵, then 𝑗:7 is the index of the first of
them, otherwise 𝑗:7 = 𝑗:.

Thus the Lemma 4 and Lemma 5 show how to obtain the
marks of 𝐴7 in 𝐵, and previously we have shown how to obtain
the marks of 𝐵 in 𝐴7. Thus we have shown how update the
marks of 𝐴 and 𝐵 to marks of 𝐴7 and 𝐵. For the usability
purposes we combine this claim into the final postulations
(see Figure 1).

Theorem 1 For 𝑘, 1 ≤ 𝑘 ≤ 𝑙, it holds 𝑖:7 = 𝑖:; if there
is 𝑥 between indexes 𝑗:N+ and 𝑗: in 𝐵, then 𝑗:7 is the index of
the first of them, and otherwise it holds 𝑗:7 = 𝑗:; it holds 𝑙7 =
𝑙 + 1 if and only if 𝐵 has symbol 𝑥 after index 𝑗;, and in that
case it holds 𝑖;_+7 = 𝑚 + 1 and 𝑗;_+7 is the index of first 𝑥 after
𝑗; in 𝐵.

Theorem 2 For some 𝑗, 1 ≤ 𝑗 ≤ 𝑛, the match 𝑚 +
1, 𝑗 is dominant if and only if for some 𝑘, 1 ≤ 𝑘 ≤ 𝑙, it holds
𝑗 = 𝑗:7 < 𝑗: or 𝑙7 = 𝑙 + 1 and 𝑗 = 𝑗;_+7 .

Thus the Theorem 1 shows how to update the marks of 𝐴 and
𝐵 to the marks of 𝐴7 and 𝐵, and Theorem 2 shows how to
enumerate all dominant matches of 𝐴7 and 𝐵 with index 𝑚 +
1 in 𝐴7 during that update. Recall, that in order to provide an
online algorithm solving the LCS problem it is sufficient to
provide an online algorithm which enumerates the dominant
matches of the input sequences.

3. CONCLUSION
The LCS (Longest Common Subsequence) problem is
broadly investigated. A very basic role plays the dynamic
programming style algorithm of its solution that have today
many interpretations. Besides the classical postulation of the
problem it is an attractive to consider its online version. And
in both cases static and online it is required to split the task
into the parallel computational threads. The online parallel
algorithm introduced in this paper presents another
interpretation of the mentioned de-facto standard algorithm of
the domain, that provides additional structures that are able to
accompany the algorithmic iterations, providing it the same
way perfect parallelization for arbitrary number of processors.

The designed online parallel algorithm is given for the
“simple” case of the basic algorithm when ordinary sequential
data structure to store and update are used. The specific case
when tree like structures are used to reduce the complexity is
still waiting for its elaboration.

It is to mention that the other known parallel algorithms in the
domain are developed on base of the classical algorithm so
that they can’t be online. They also depend critically on the
lengths of input sequences and on the number of processors.

REFERENCES

[1] Hirschberg D. S., A linear space algorithm for computing

maximal common subsequences, Communications of
the ACM. 18 (6): 341–343, 1975.

[2] Osamu Gotoh, An improved algorithm for matching
biological sequences, Journal of molecular biology,
162: 705–708, 1982.

[3] Stephen F. Altschul, Bruce W. Erickson, Optimal
sequence alignment using affine gap costs, Bulletin of
Mathematical Biology, 48: 603–616, 1986.

[4] Webb Miller, Eugene Myers, Optimal alignments in linear
space, Computer applications in the biosciences. 4: 11–
17, 1988. doi:10.1093/bioinformatics/4.1.11.

[5] Saul B. Needleman, Christian D. Wunsch, A general
method applicable to the search for similarities in the
amino acid sequence of two proteins, Journal of
Molecular Biology, 48: 443–453, 1970.

[6] Sankoff D., Matching Sequences under Deletion/Insertion
Constraints, Proceedings of the National Academy of
Sciences of the United States of America, vol. 69, no. 1,
pp. 4-6, 1972.

[7] Thomas A. Reichert, Donald N. Cohen, Andrew K.C.
Wong, An application of information theory to genetic
mutations and the matching of polypeptide sequences,
Journal of Theoretical Biology. 42: 245–261, 1973.

[8] William A. Beyer, Myron L. Stein, Temple F. Smith,
Stanislaw M. Ulam, A molecular sequence metric and
evolutionary trees, Mathematical Biosciences. 19: 9–25,
1974.

[9] Peter H. Sellers, On the Theory and Computation of
Evolutionary Distances, Journal of Applied
Mathematics, 26: 787–793, 1974.

[10] M.S Waterman, T.F Smith, W.A Beyer, Some biological
sequence metrics, Advances in Mathematics. 20: 367–
387, 1976.

[11] Durbin R., Eddy S., Krogh A., Mitchison G., Biological
sequence analysis: Probabilistic Models of Proteins and
Nucleic Acids, eleventh edition, Cambridge University
Press, 2006.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, Clifford Stein, Introduction to algorithms, 3rd
edition, MIT Press, 2009, 1292p.

[13] Aho A., Hopcroft J., Ullman J., Data Structures and
Algorithms, Addison-Wesley, 1983.

[14] Aho A., Hirschberg D., Ullman J., Bounds on the
complexity of the Longest common subsequence
problem, Journal of the Association for Computing
Machinery, Vol 23, No l, January 1976, pp 1-12.

[15] Yanni Li , Hui Li , Tihua Duan , Sheng Wang , Zhi Wang,
Yang Cheng, A Real Linear and Parallel Multiple
Longest Common Subsequences (MLCS) Algorithm,
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
August 13-17, 2016, San Francisco, California, USA.

[16] L. Bergroth, H. Hakonen, T. Raita, A Survey of Longest
Common Subsequence Algorithms, Technical report,
Dept. of Computer Science, University of Turku,
Finland, 2000.

[17] Apostolico Guerra, The longest common subsequence
problem revisited, 1986.

[18] Yang, Xu and Shang, An Efficient Parallel Algorithm for
Longest, 2010.

[19] Liu, Chen and Zou, Parallel algorithms for the longest
common subsequence, 1994.

[20] Liu, Chen and Zou, A Parallel LCS Algorithm for
Biosequences Alignment, 2007.

[21] Eppstein, David, Galil, Zvi, Parallel algorithmic
techniques for combinatorial computation, Annual
Review of Computer Science, 3: 233–283, 1988.

[22] L. Aslanyan, J. Castellanos, F. Mingo, H. Sahakyan, V.
Ryazanov, Algorithms for Data Flows, International
Journal Information Theories and Applications, ISSN
1310-0513, Volume 10, Number 3, pp. 279-282, 2003.

[23] V. Minasyan. On the structure of maximum independent
sets in bipartite graphs. International Journal
Information Theories and Applications (IJITA), Vol.
17, No. 2, 2010, pp. 177-188.

[24] L. Aslanyan and H. Sahakyan, Numerical
characterization of n-cube subset partitioning,
Electronic Notes in Discrete Mathematics, Volume 27,
Pages 3-4/110, October 2006, Elsevier B.V., ODSA
2006 - Conference on Optimal Discrete Structures and
algorithms.

[25] H. Sahakyan, Numerical characterization of n-cube
subset partitioning, Discrete Applied Mathematics,
Volume 157, Issue 9, pp. 2191-2197, 2009.

[26] Yu. I. Zhuravlev, L. A. Aslanyan and V. V. Ryazanov,
Analysis of a Training Sample and Classification in one
recognition model, Pattern recognition and image
analysis, ISSN 1054-6618, 2014, vol. 24, no. 3, pp. 347-
352.

[27] Arakelyan A., Aslanyan L., Boyajyan A., On
Knowledge-based Gene Expression data analysis,
Selected Revised Papers of 9th Computer Science and
Information Technologies conference, IEEE Xplore, pp.
105-109, 2013.

